## Jan Weijma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/155241/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Copper Recovery Combined with Electricity Production in a Microbial Fuel Cell. Environmental Science & Technology, 2010, 44, 4376-4381.                                                   | 10.0 | 322       |
| 2  | Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate. Applied and Environmental Microbiology, 1994, 60, 3368-3374. | 3.1  | 100       |
| 3  | Control of the sulfide (S2â^) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor. Water Research, 2003, 37, 3709-3717.                | 11.3 | 94        |
| 4  | X-Ray Diffraction of Iron Containing Samples: The Importance of a Suitable Configuration.<br>Geomicrobiology Journal, 2018, 35, 511-517.                                                  | 2.0  | 91        |
| 5  | Harvest to harvest: Recovering nutrients with New Sanitation systems for reuse in Urban<br>Agriculture. Resources, Conservation and Recycling, 2018, 128, 426-437.                        | 10.8 | 82        |
| 6  | Acceptance of new sanitation: The role of end-users' pro-environmental personal norms and risk and benefit perceptions. Water Research, 2018, 131, 90-99.                                 | 11.3 | 80        |
| 7  | Autogenerative high pressure digestion: anaerobic digestion and biogas upgrading in a single step reactor system. Water Science and Technology, 2011, 64, 647-653.                        | 2.5  | 78        |
| 8  | Biogenic Scorodite Crystallization by <i>Acidianus sulfidivorans</i> for Arsenic Removal.<br>Environmental Science & Technology, 2010, 44, 675-680.                                       | 10.0 | 69        |
| 9  | Sulfur Reduction in Acid Rock Drainage Environments. Environmental Science & Technology, 2015, 49, 11746-11755.                                                                           | 10.0 | 59        |
| 10 | Methanol utilization by a novel thermophilic homoacetogenic bacterium, Moorella mulderi sp. nov.,<br>isolated from a bioreactor. Archives of Microbiology, 2003, 179, 315-320.            | 2.2  | 54        |
| 11 | Microbiological selenate to selenite conversion for selenium removal. Water Research, 2013, 47, 2118-2128.                                                                                | 11.3 | 53        |
| 12 | Fertile cities: Nutrient management practices in urban agriculture. Science of the Total Environment, 2019, 668, 1277-1288.                                                               | 8.0  | 50        |
| 13 | Continuous bioscorodite crystallization in CSTRs for arsenic removal and disposal. Water Research, 2012, 46, 5883-5892.                                                                   | 11.3 | 43        |
| 14 | High-Calorific Biogas Production by Selective CO <sub>2</sub> Retention at Autogenerated Biogas<br>Pressures up to 20 Bar. Environmental Science & Technology, 2012, 46, 1895-1902.       | 10.0 | 41        |
| 15 | Immobilization of arsenic as scorodite by a thermoacidophilic mixed culture via As(III)-catalyzed oxidation with activated carbon. Journal of Hazardous Materials, 2019, 368, 221-227.    | 12.4 | 38        |
| 16 | Optimisation of sulphate reduction in a methanol-fed thermophilic bioreactor. Water Research, 2002, 36, 1825-1833.                                                                        | 11.3 | 36        |
| 17 | Bioscorodite Crystallization in an Airlift Reactor for Arsenic Removal. Crystal Growth and Design, 2012, 12, 2699-2706.                                                                   | 3.0  | 32        |
| 18 | Silicate minerals for CO2 scavenging from biogas in Autogenerative High Pressure Digestion. Water<br>Research, 2013, 47, 3742-3751.                                                       | 11.3 | 30        |

Jan Weijma

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Performance of a thermophilic sulfate and sulfite reducing high rate anaerobic reactor fed with methanol. Biodegradation, 2000, 11, 429-439.                                                  | 3.0 | 25        |
| 20 | Kinetics of ferrous iron oxidation by batch and continuous cultures of thermoacidophilic Archaea at extremely low pH of 1.1–1.3. Applied Microbiology and Biotechnology, 2012, 93, 1295-1303. | 3.6 | 18        |
| 21 | Biological Conversion of Anglesite (PbSO4) and Lead Waste from Spent Car Batteries to Galena (PbS).<br>Biotechnology Progress, 2002, 18, 770-775.                                             | 2.6 | 16        |
| 22 | Thiosulphate conversion in a methane and acetate fed membrane bioreactor. Environmental Science and Pollution Research, 2016, 23, 2467-2478.                                                  | 5.3 | 10        |
| 23 | Starch hydrolysis in autogenerative high pressure digestion: Gelatinisation and saccharification as rate limiting steps. Biomass and Bioenergy, 2014, 71, 256-265.                            | 5.7 | 9         |
| 24 | High rates of anaerobic oxidation of methane, ethane and propane coupled to thiosulphate reduction.<br>Environmental Science and Pollution Research, 2015, 22, 3697-3704.                     | 5.3 | 9         |
| 25 | Methanol utilizing Desulfotomaculum species utilizes hydrogen in a methanol-fed sulfate-reducing bioreactor. Applied Microbiology and Biotechnology, 2007, 73, 1203-1211.                     | 3.6 | 7         |
| 26 | HPLC inorganic arsenic speciation analysis of samples containing high sulfuric acid and iron levels.<br>Toxicological and Environmental Chemistry, 2011, 93, 415-423.                         | 1.2 | 7         |
| 27 | Quantifying microorganisms during biooxidation of arsenite and bioleaching of zinc sulfide. Minerals<br>Engineering, 2013, 48, 25-30.                                                         | 4.3 | 5         |
| 28 | Magnetite synthesis from ferrous iron solution at pH 6.8 in a continuous stirred tank reactor. Water<br>Science and Technology, 2018, 77, 1870-1878.                                          | 2.5 | 4         |
| 29 | Recovery of Metals and Stabilization of Arsenic from (Bio-)Leaching Operations by Engineered<br>Biological Processes, Advanced Materials Research, 0, 825, 536-539,                           | 0.3 | 1         |