Zhengfeng Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1551885/publications.pdf

Version: 2024-02-01

		430874	454955
56	1,086	18	30
papers	citations	h-index	g-index
58	58	58	516
30	30	30	310
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Novel Quadruple-Node-Upset-Tolerant Latch Designs With Optimized Overhead for Reliable Computing in Harsh Radiation Environments. IEEE Transactions on Emerging Topics in Computing, 2022, 10, 404-413.	4.6	49
2	Cost-Effective and Highly Reliable Circuit-Components Design for Safety-Critical Applications. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58, 517-529.	4.7	20
3	Anti-interference low-power double-edge triggered flip-flop based on C-elements. Tsinghua Science and Technology, 2022, 27, 1-12.	6.1	8
4	Quadruple and Sextuple Cross-Coupled SRAM Cell Designs With Optimized Overhead for Reliable Applications. IEEE Transactions on Device and Materials Reliability, 2022, 22, 282-295.	2.0	34
5	Two 0.8 V, Highly Reliable RHBD 10T and 12T SRAM Cells for Aerospace Applications. , 2022, , .		О
6	A Novel TDMA-Based Fault Tolerance Technique for the TSVs in 3D-ICs Using Honeycomb Topology. IEEE Transactions on Emerging Topics in Computing, 2021, 9, 724-734.	4.6	39
7	Novel Low Cost, Double-and-Triple-Node-Upset-Tolerant Latch Designs for Nano-scale CMOS. IEEE Transactions on Emerging Topics in Computing, 2021, 9, 520-533.	4.6	68
8	Cross-Layer Dual Modular Redundancy Hardened Scheme of Flip-Flop Design Based on Sense-Amplifier. Journal of Circuits, Systems and Computers, 2021, 30, 2120003.	1.5	1
9	High-Throughput Portable True Random Number Generator Based on Jitter-Latch Structure. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 741-750.	5.4	33
10	A Cost-Effective TSV Repair Architecture for Clustered Faults in 3-D IC. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 1952-1956.	2.7	29
11	A Nanofluidic Sensor for Real-Time Detection of Ultratrace Contaminant Particles in IC Fabrication. IEEE Sensors Journal, 2021, 21, 755-764.	4.7	4
12	Design of a Highly Robust Triple-Node-Upset Self-Recoverable Latch. IEEE Access, 2021, 9, 113622-113630.	4.2	9
13	Chip test pattern reordering method using adaptive test to reduce cost for testing of ICs. IEICE Electronics Express, 2021, 18, 20200420-20200420.	0.8	7
14	TPDICE and Sim Based 4-Node-Upset Completely Hardened Latch Design for Highly Robust Computing in Harsh Radiation. , 2021, , .		7
15	A Lightweight Configurable XOR RO-PUF Design Based on Xilinx FPGA. , 2021, , .		7
16	Pure Digital Scalable Mixed Entropy Separation Structure for Physical Unclonable Function and True Random Number Generator. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 1922-1929.	3.1	5
17	LCHR-TSV: Novel Low Cost and Highly Repairable Honeycomb-Based TSV Redundancy Architecture for Clustered Faults. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 2938-2951.	2.7	55
18	Non-Intrusive Online Distributed Pulse Shrinking-Based Interconnect Testing in 2.5D IC. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 2657-2661.	3.0	40

#	Article	IF	Citations
19	Quadruple Cross-Coupled Dual-Interlocked-Storage-Cells-Based Multiple-Node-Upset-Tolerant Latch Designs. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 879-890.	5.4	32
20	Jitter-Quantizing-Based TRNG Robust Against PVT Variations. IEEE Access, 2020, 8, 108482-108490.	4.2	18
21	Pattern Reorder for Test Cost Reduction Through Improved SVMRANK Algorithm. IEEE Access, 2020, 8, 147965-147972.	4.2	10
22	Architecture of Cobweb-Based Redundant TSV for Clustered Faults. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 1736-1739.	3.1	132
23	Information Assurance Through Redundant Design: A Novel TNU Error-Resilient Latch for Harsh Radiation Environment. IEEE Transactions on Computers, 2020, 69, 789-799.	3.4	66
24	A Double-Node-Upset Self-Recoverable Latch Design for High Performance and Low Power Application. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 287-291.	3.0	29
25	Design of Wireless Network on Chip with Priority-Based MAC. Journal of Circuits, Systems and Computers, 2019, 28, 1950124.	1.5	3
26	FPGAâ€based RO PUF with low overhead and high stability. Electronics Letters, 2019, 55, 510-513.	1.0	10
27	A Novel Built-In Self-Repair Scheme for 3D Memory. IEEE Access, 2019, 7, 65052-65059.	4.2	4
28	A Novel Triple-Node-Upset-Tolerant CMOS Latch Design using Single-Node-Upset-Resilient Cells. , 2019, , .		13
29	Novel Application of Deep Learning for Adaptive Testing Based on Long Short-Term Memory. , 2019, , .		6
30	Rapid detection of trace Cu 2+ using an l â€cysteine based interdigitated electrode sensor integrated with AC electrokinetic enrichment. Electrophoresis, 2019, 40, 2699-2705.	2.4	11
31	Novel approach of LSTM for adaptive testing. , 2019, , .		1
32	Novel Quadruple Cross-Coupled Memory Cell Designs With Protection Against Single Event Upsets and Double-Node Upsets. IEEE Access, 2019, 7, 176188-176196.	4.2	20
33	Design of Low-Power WiNoC with Congestion-Aware Wireless Node. Journal of Circuits, Systems and Computers, 2018, 27, 1850148.	1.5	7
34	An improved communication scheme for non-HOL-blocking wireless NoC. The Integration VLSI Journal, 2018, 60, 240-247.	2.1	6
35	An All-Digital and Jitter-Quantizing True Random Number Generator in SRAM-Based FPGAs. , 2018, , .		6
36	A Hybrid DMR Latch to Tolerate MNU Using TDICE and WDICE. , 2018, , .		2

#	Article	IF	CITATIONS
37	A Low-Cost High-Efficiency True Random Number Generator on FPGAs., 2018,,.		4
38	Double-Node-Upset-Resilient Latch Design for Nanoscale CMOS Technology. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25, 1978-1982.	3.1	86
39	HLDTL: High-performance, low-cost, and double node upset tolerant latch design. , 2017, , .		5
40	A single event transient detector in SRAM-based FPGAs. IEICE Electronics Express, 2017, 14, 20170210-20170210.	0.8	5
41	Vernier ring based pre-bond through silicon vias test in 3D ICs. IEICE Electronics Express, 2017, 14, 20170590-20170590.	0.8	9
42	Highly Robust Double Node Upset Resilient Hardened Latch Design. IEICE Transactions on Electronics, 2017, E100.C, 496-503.	0.6	6
43	A highly reliable butterfly PUF in SRAM-based FPGAs. IEICE Electronics Express, 2017, 14, 20170551-20170551.	0.8	11
44	A Region-Based Through-Silicon via Repair Method for Clustered Faults. IEICE Transactions on Electronics, 2017, E100.C, 1108-1117.	0.6	13
45	A transient pulse dually filterable and online self-recoverable latch. IEICE Electronics Express, 2017, 14, 20160911-20160911.	0.8	6
46	NBTI mitigation by M-IVC with input duty cycle and randomness constraints. , 2016, , .		0
47	Co-mitigating circuit PBTI and HCI aging considering NMOS transistor stacking effect. , 2016, , .		0
48	Highâ€performance, lowâ€cost, and highly reliable radiation hardened latch design. Electronics Letters, 2016, 52, 139-141.	1.0	24
49	A Self-Recoverable, Frequency-Aware and Cost-Effective Robust Latch Design for Nanoscale CMOS Technology. IEICE Transactions on Electronics, 2015, E98.C, 1171-1178.	0.6	41
50	A High Performance SEU Tolerant Latch. Journal of Electronic Testing: Theory and Applications (JETTA), 2015, 31, 349-359.	1.2	57
51	Design of a Radiation Hardened Latch for Low-Power Circuits. , 2014, , .		21
52	A high performance SEU-tolerant latch for nanoscale CMOS technology. , 2014, , .		2
53	A high performance SEU-tolerant latch for nanoscale CMOS technology. , 2014, , .		4
54	An improved aging-predict scheme based on symmetrical nor gate. Journal of Electronics, 2013, 30, 509-516.	0.2	0

ZHENGFENG HUANG

#	Article	IF	CITATIONS
55	A Dynamic Self-Adaptive Correction Method for Error Resilient Application. , 2013, , .		1
56	A fault detection sensor for circuit aging using double-edge-triggered flip-flop. Journal of Electronics, 2013, 30, 97-103.	0.2	0