Maria Fernanda Sanchez Goñi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1551519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics, 2008, 30, 887-907.	3.8	590
2	Marine Isotope Substage 5e and the Eemian Interglacial. Global and Planetary Change, 2003, 36, 151-155.	3.5	419
3	Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region. Climate Dynamics, 2002, 19, 95-105.	3.8	381
4	Contrasting impacts of Dansgaard–Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quaternary Science Reviews, 2008, 27, 1136-1151.	3.0	366
5	High resolution palynological record off the Iberian margin: direct land-sea correlation for the Last Interglacial complex. Earth and Planetary Science Letters, 1999, 171, 123-137.	4.4	364
6	Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quaternary Research, 2008, 70, 451-464.	1.7	325
7	Millennial-scale variability during the last glacial in vegetation records from Europe. Quaternary Science Reviews, 2010, 29, 2839-2864.	3.0	315
8	Millennial-scale climate variability and vegetation changes during the Last Glacial: Concepts and terminology. Quaternary Science Reviews, 2010, 29, 2823-2827.	3.0	284
9	European Climatic Response to Millennial-Scale Changes in the Atmosphere–Ocean System during the Last Glacial Period. Quaternary Research, 2000, 54, 394-403.	1.7	226
10	Neandertal extinction and the millennial scale climatic variability of OIS 3. Quaternary Science Reviews, 2003, 22, 769-788.	3.0	224
11	Present-day and past (last 25000Âyears) marine pollen signal off western Iberia. Marine Micropaleontology, 2007, 62, 91-114.	1.2	221
12	Holocene biomass burning and global dynamics of the carbon cycle. Chemosphere, 2002, 49, 845-863.	8.2	198
13	The Classic Marine Isotope Substage 5e. Quaternary Research, 2002, 58, 14-16.	1.7	192
14	Evidence for Obliquity Forcing of Glacial Termination II. Science, 2009, 325, 1527-1531.	12.6	189
15	Saharan Dust Transport and High-Latitude Glacial Climatic Variability: The Alboran Sea Record. Quaternary Research, 2002, 58, 318-328.	1.7	184
16	Neanderthal Extinction by Competitive Exclusion. PLoS ONE, 2008, 3, e3972.	2.5	176
17	Revealing climatic variability of the last three millennia in northwestern Iberia using pollen influx data. Earth and Planetary Science Letters, 2003, 213, 63-78.	4.4	172
18	Links between marine and atmospheric processes oscillating on a millennial time-scale. A multi-proxy study of the last 50,000yr from the Alboran Sea (Western Mediterranean Sea). Quaternary Science Reviews, 2005, 24, 1623-1636.	3.0	168

Maria Fernanda Sanchez

#	Article	IF	CITATIONS
19	Wet to dry climatic trend in north-western Iberia within Heinrich events. Earth and Planetary Science Letters, 2009, 284, 329-342.	4.4	167
20	Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nature Geoscience, 2018, 11, 474-485.	12.9	166
21	Increasing vegetation and climate gradient in Western Europe over the Last Glacial Inception (122–110) Tj ETC	2q1 1 0.78	4314 rgBT
22	Position of the Polar Front along the western Iberian margin during key cold episodes of the last 45 ka. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	154
23	Abrupt climate changes of the last deglaciation detected in a Western Mediterranean forest record. Climate of the Past, 2010, 6, 245-264.	3.4	146
24	Onset of Mediterranean outflow into the North Atlantic. Science, 2014, 344, 1244-1250.	12.6	144
25	Mid-Holocene emergence of a low-frequency millennial oscillation in western Mediterranean climate: Implications for past dynamics of the North Atlantic atmospheric westerlies. Holocene, 2013, 23, 153-166.	1.7	141
26	Orbital-scale climate forcing of grassland burning in southern Africa. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5069-5073.	7.1	135
27	The climate in Europe during the Eemian: a multi-method approach using pollen data. Quaternary Science Reviews, 2008, 27, 2303-2315.	3.0	126
28	Global patterns of vegetation response to millennial-scale variability and rapid climate change during the last glacial period. Quaternary Science Reviews, 2010, 29, 2957-2980.	3.0	121
29	A compilation of Western European terrestrial records 60–8ÂkaÂBP: towards an understanding of latitudinal climatic gradients. Quaternary Science Reviews, 2014, 106, 167-185.	3.0	121
30	H4 abrupt event and late Neanderthal presence in Iberia. Earth and Planetary Science Letters, 2007, 258, 283-292.	4.4	115
31	A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin. Global and Planetary Change, 2015, 133, 49-64.	3.5	99
32	What drives the millennial and orbital variations of δ18Oatm?. Quaternary Science Reviews, 2010, 29, 235-246.	3.0	98
33	Is vegetation responsible for glacial inception during periods of muted insolation changes?. Quaternary Science Reviews, 2005, 24, 1361-1374.	3.0	96
34	High-altitude vegetational pattern on the Iberian Mountain Chain (north-central Spain) during the Holocene. Holocene, 1999, 9, 39-57.	1.7	95
35	Dansgaard–Oeschger climatic variability revealed by fire emissions in southwestern Iberia. Quaternary Science Reviews, 2007, 26, 1369-1383.	3.0	93
36	Low-latitude "dusty events―vs. high-latitude "icy Heinrich Events― Quaternary Research, 2007, 68, 379-386.	1.7	84

Maria Fernanda Sanchez

#	Article	IF	CITATIONS
37	Climate variability across the last deglaciation in NW Iberia and its margin. Quaternary International, 2016, 414, 9-22.	1.5	81
38	Relationships between plant traits and climate in the Mediterranean region: A pollen data analysis. Journal of Vegetation Science, 2004, 15, 635-646.	2.2	80
39	European climate optimum and enhanced Greenland melt during the Last Interglacial. Geology, 2012, 40, 627-630.	4.4	78
40	Air–sea temperature decoupling in western Europe during the last interglacial–glacial transition. Nature Geoscience, 2013, 6, 837-841.	12.9	73
41	Climatic variability of Marine Isotope Stage 7: direct land–sea–ice correlation from a multiproxy analysis of a north-western Iberian margin deep-sea core. Quaternary Science Reviews, 2006, 25, 1010-1026.	3.0	72
42	Identifying early modern human ecological niche expansions and associated cultural dynamics in the South African Middle Stone Age. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7869-7876.	7.1	67
43	Direct land/sea correlation of the Eemian, and its comparison with the Holocene: a high-resolution palynological record off the Iberian margin. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2000, 79, 345-354.	0.9	63
44	Consistently dated Atlantic sediment cores over the last 40 thousand years. Scientific Data, 2019, 6, 165.	5.3	63
45	Land–sea climatic variability in the eastern North Atlantic subtropical region over the last 14,200 years: Atmospheric and oceanic processes at different timescales. Holocene, 2014, 24, 787-797.	1.7	61
46	Testing the Hypothesis of Fire Use for Ecosystem Management by Neanderthal and Upper Palaeolithic Modern Human Populations. PLoS ONE, 2010, 5, e9157.	2.5	60
47	Digital image treatment applied to ichnological analysis of marine core sediments. Facies, 2014, 60, 39-44.	1.4	60
48	Quantitative estimation of bioturbation based on digital image analysis. Marine Geology, 2014, 349, 55-60.	2.1	59
49	The nature of MIS 3 stadial–interstadial transitions in Europe: New insights from model–data comparisons. Quaternary Science Reviews, 2011, 30, 3618-3637.	3.0	58
50	IODP Expedition 339 in the Gulf of Cadiz and off West Iberia: decoding the environmental significance of the Mediterranean outflow water and its global influence. Scientific Drilling, 0, 16, 1-11.	0.6	53
51	The archaeology and paleoenvironment of an Upper Pleistocene hyena den: An integrated approach. Journal of Archaeological Science, 2010, 37, 919-935.	2.4	50
52	Millennial-scale climatic variability between 340 000 and 270 000 years ago in SW Europe: evidence from a NW Iberian margin pollen sequence. Climate of the Past, 2009, 5, 53-72.	3.4	46
53	Dinoflagellate cyst evidence of â€~Heinrich-like events' off Portugal during the Marine Isotopic Stage 5. Marine Micropaleontology, 2000, 40, 9-21.	1.2	45
54	Indian monsoon variations during three contrasting climatic periods: The Holocene, Heinrich Stadial 2 and the last interglacial–glacial transition. Quaternary Science Reviews, 2015, 125, 50-60.	3.0	43

#	Article	IF	CITATIONS
55	Long-term and millennial-scale climate variability in northwestern France during the last 8850 years. Holocene, 2007, 17, 939-953.	1.7	41
56	The "Shackleton Site" (IODP Site U1385) on the Iberian Margin. Scientific Drilling, 0, 16, 13-19.	0.6	41
57	<i>Pinus nigra</i> (European black pine) as the dominant species of the last glacial pinewoods in southâ€western to central Iberia: a morphological study of modern and fossil pollen. Journal of Biogeography, 2015, 42, 1998-2009.	3.0	40
58	Tropically-driven climate shifts in southwestern Europe during MIS 19, a low eccentricity interglacial. Earth and Planetary Science Letters, 2016, 448, 81-93.	4.4	39
59	The complexity of millennial-scale variability in southwestern Europe during MIS 11. Quaternary Research, 2016, 86, 373-387.	1.7	39
60	Lateglacial and Holocene environmental changes in Portuguese coastal lagoons 3: vegetation history of the Santo Andre coastal area. Holocene, 2003, 13, 459-464.	1.7	38
61	Last glacial fire regime variability in western France inferred from microcharcoal preserved in core MD04-2845, Bay of Biscay. Quaternary Research, 2009, 71, 385-396.	1.7	38
62	The ACER pollen and charcoal database: aÂglobal resource to document vegetation and fire response to abrupt climate changes during the last glacial period. Earth System Science Data, 2017, 9, 679-695.	9.9	38
63	Contrasting sea-surface responses between the western Mediterranean Sea and eastern subtropical latitudes of the North Atlantic during abrupt climatic events of MIS 3. Marine Micropaleontology, 2011, 80, 1-17.	1.2	36
64	Pollen from the Deep-Sea: A Breakthrough in the Mystery of the Ice Ages. Frontiers in Plant Science, 2018, 9, 38.	3.6	35
65	History of Larix decidua Mill. (European larch) since 130Âka. Quaternary Science Reviews, 2015, 124, 224-247.	3.0	34
66	Vegetation dynamics in the Northeastern Mediterranean region during the past 23 000 yr: insights from a new pollen record from the Sea of Marmara. Climate of the Past, 2012, 8, 1941-1956.	3.4	34
67	Increased aridity in southwestern Africa during the warmest periods of the last interglacial. Climate of the Past, 2015, 11, 1417-1431.	3.4	31
68	Contrasting intrainterstadial climatic evolution between high and middle North Atlantic latitudes: A closeâ€up of Greenland Interstadials 8 and 12. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	27
69	Holocene Changes in the Douro Estuary (Northwestern Iberia). Journal of Coastal Research, 2007, 233, 711-720.	0.3	26
70	Coversand and Pleistocene palaeosols in the Landes region, southwestern France. Journal of Quaternary Science, 2009, 24, 259-269.	2.1	26
71	Coupled ocean and atmospheric changes during Greenland stadial 1 in southwestern Europe. Quaternary Science Reviews, 2019, 212, 108-120.	3.0	26
72	The use of two pollen records from deep sea cores to frame adaptive evolutionary change for humans: a comment on "Neanderthal extinction and the millennial scale climate variability of OIS 3―by F. d'Errico and M.F. SÃinchez Goñi. Quaternary Science Reviews. 2004. 23. 1217-1219.	3.0	25

#	Article	IF	CITATIONS
73	Climate changes in south western Iberia and Mediterranean Outflow variations during two contrasting cycles of the last 1Myrs: MIS 31–MIS 30 and MIS 12–MIS 11. Global and Planetary Change, 2016, 136, 18-29.	3.5	25
74	Unraveling the forcings controlling the vegetation and climate of the best orbital analogues for the present interglacial in SW Europe. Climate Dynamics, 2018, 51, 667-686.	3.8	25
75	25. Climate variability of the last five isotopic interglacials: Direct land-sea-ice correlation from the multiproxy analysis of North-Western Iberian margin deep-sea cores. Developments in Quaternary Sciences, 2007, 7, 375-386.	0.1	24
76	Beyond skepticism: uncovering cryptic refugia using multiple lines of evidence. New Phytologist, 2014, 204, 450-454.	7.3	24
77	Holocene environmental changes in the Gallocanta lacustrine basin, Iberian Range, NE Spain. Holocene, 2007, 17, 649-663.	1.7	23
78	Unexpected weak seasonal climate in the western Mediterranean region during MIS 31, a high-insolation forced interglacial. Quaternary Science Reviews, 2017, 161, 1-17.	3.0	22
79	Modern pollen representation of the vegetation of the Tagus Basin (central Iberian Peninsula). Review of Palaeobotany and Palynology, 2020, 276, 104193.	1.5	20
80	Impact of precession on the climate, vegetation and fire activity in southern Africa during MIS4. Climate of the Past, 2014, 10, 1165-1182.	3.4	18
81	Dinoflagellate cyst population evolution throughout past interglacials: Key features along the Iberian margin and insights from the new IODP Site U1385 (Exp 339). Global and Planetary Change, 2016, 136, 52-64.	3.5	16
82	BINCOR: An R package for Estimating the Correlation between Two Unevenly Spaced Time Series. R Journal, 2019, 11, 170.	1.8	16
83	The expansion of Central and Northern European Neolithic populations was associated with a multi-century warm winter and wetter climate. Holocene, 2016, 26, 1188-1199.	1.7	15
84	Pronounced northward shift of the westerlies during MIS 17 leading to the strong 100-kyr ice age cycles. Earth and Planetary Science Letters, 2019, 511, 117-129.	4.4	14
85	Regional impacts of climate change and its relevance to human evolution. Evolutionary Human Sciences, 2020, 2, .	1.7	14
86	13. Introduction to climate and vegetation in Europe during MIS5. Developments in Quaternary Sciences, 2007, , 197-205.	0.1	13
87	Holocene land–sea climatic links on the equatorial Pacific coast (Bay of Guayaquil, Ecuador). Holocene, 2016, 26, 567-577.	1.7	13
88	19. Vegetation dynamics in southern Germany during marine isotope stage 5 (~ 130 to 70 kyr ago). Developments in Quaternary Sciences, 2007, , 277-287.	0.1	10
89	Response of the carbon cycle in an intermediate complexity model to the different climate configurations of the last nineÂinterglacials. Climate of the Past, 2018, 14, 239-253.	3.4	10
90	"A Garden of Eden for the Gibraltar Neandertals? A reply to Finlayson et al.― Quaternary Science Reviews, 2004, 23, 1210-1216.	3.0	7

Maria Fernanda Sanchez

#	Article	IF	CITATIONS
91	Combination of insolation and ice-sheet forcing drive enhanced humidity in northern subtropical regions during MIS 13. Quaternary Science Reviews, 2020, 247, 106573.	3.0	7
92	Muted cooling and drying of NW Mediterranean in response to the strongest last glacial North American ice surges. Bulletin of the Geological Society of America, 2021, 133, 451-460.	3.3	7
93	Control Mechanisms of Primary Productivity Revealed by Calcareous Nannoplankton From Marine Isotope Stages 12 to 9 at the Shackleton Site (IODP Site U1385). Paleoceanography and Paleoclimatology, 2021, 36, e2021PA004246.	2.9	7
94	36. Interglacials as simulated by the LLN 2-D NH and MoBidiC climate models. Developments in Quaternary Sciences, 2007, 7, 547-561.	0.1	5
95	Carbon 13 Isotopes Reveal Limited Ocean Circulation Changes Between Interglacials of the Last 800Âka. Paleoceanography and Paleoclimatology, 2020, 35, e2019PA003776.	2.9	5
96	A stationary Mediterranean forest in southeastern Iberia during OIS 3? A reply to the comments by J.S. CarriÃ ³ n. Quaternary Science Reviews, 2004, 23, 1219-1224.	3.0	3
97	On the Last Glacial Maximum and Interstadials During the Solutrean: A Contradiction?. Current Anthropology, 1991, 32, 573-575.	1.6	2
98	40. Chronology and climate forcing of the last four interglacials. Developments in Quaternary Sciences, 2007, 7, 597-614.	0.1	2
99	Vegetation and environmental changes at the Middle Stone Age site of Wonderkrater, Limpopo, South Africa. Quaternary Research, 2017, 88, 313-326.	1.7	2
100	Abrupt (or millennial or suborbital) climatic variability: Heinrich events/stadials. , 2022, , 181-187.		2
101	Impact of terrestrial biosphere on the atmospheric CO ₂ concentration across Termination V. Climate of the Past, 2022, 18, 1429-1451.	3.4	2
102	7. L'impact du Dernier Maximum glaciaire sur les populations européennes. , 2012, , 125-140.		1
103	6. La variabilité climatique rapide de la dernière période glaciaire et l'extinction des Néandertaliens. , 2012, , 107-121.		1
104	Definition of the Last Glacial Cycle marine stages and chronology. , 2022, , 171-173.		1
105	Abrupt climatic variability: Dansgaard–Oeschger events. , 2022, , 175-180.		1
106	An overview of the Last Glacial Cycle. , 2022, , 165-169.		1
107	Environmental changes in SW France during the Middle to Upper Paleolithic transition from the pollen analysis of an eastern North Atlantic deep-sea core. Quaternary Research, 2022, 110, 147-164.	1.7	1
108	The climatic and environmental context of the Late Pleistocene. , 2022, , 17-38.		1

#	Article	IF	CITATIONS
109	and Spain. Nature, 1993, 363, 10-10.	27.8	0
110	The Clobal Last Clacial Maximum: the Eastern North Atlantic (marine sediments) and the Greenland Ice Sheet climatic signal. , 2022, , 189-194.		0
111	Pollen: A Key Tool for Understanding Climate, Vegetation, and Human Evolution. Progress in Botany Fortschritte Der Botanik, 2022, , 395-434.	0.3	0