Jennifer N Andexer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1551437/publications.pdf Version: 2024-02-01

IENNIEED N ANDEVED

#	Article	IF	CITATIONS
1	Emerging Enzymes for ATP Regeneration in Biocatalytic Processes. ChemBioChem, 2015, 16, 380-386.	2.6	149
2	Catalytic Alkylation Using a Cyclic <i>S</i> â€Adenosylmethionine Regeneration System. Angewandte Chemie - International Edition, 2017, 56, 4037-4041.	13.8	124
3	Round, round we go – strategies for enzymatic cofactor regeneration. Natural Product Reports, 2020, 37, 1316-1333.	10.3	115
4	Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4776-4781.	7.1	99
5	Substrate recognition and mechanism revealed by ligand-bound polyphosphate kinase 2 structures. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3350-3355.	7.1	52
6	Asymmetric Câ€Alkylation by the <i>S</i> â€Adenosylmethionineâ€Dependent Methyltransferase SgvM. Angewandte Chemie - International Edition, 2017, 56, 4033-4036.	13.8	46
7	Catalytic Alkylation Using a Cyclic <i>S</i> â€Adenosylmethionine Regeneration System. Angewandte Chemie, 2017, 129, 4095-4099.	2.0	42
8	Several Polyphosphate Kinaseâ€2 Enzymes Catalyse the Production of Adenosine 5′â€₽olyphosphates. ChemBioChem, 2019, 20, 1019-1022.	2.6	39
9	Regiocomplementary Oâ€Methylation of Catechols by Using Threeâ€Enzyme Cascades. ChemBioChem, 2015, 16, 2576-2579.	2.6	37
10	Functional and structural characterisation of a bacterial <i>O</i> â€methyltransferase and factors determining regioselectivity. FEBS Letters, 2017, 591, 312-321.	2.8	34
11	A Flexible Polyphosphateâ€Driven Regeneration System for Coenzymeâ€A Dependent Catalysis. ChemCatChem, 2017, 9, 4164-4168.	3.7	32
12	Asymmetric Câ€Alkylation by the <i>S</i> â€Adenosylmethionineâ€Dependent Methyltransferase SgvM. Angewandte Chemie, 2017, 129, 4091-4094.	2.0	29
13	A bicyclic <i>S</i> -adenosylmethionine regeneration system applicable with different nucleosides or nucleotides as cofactor building blocks. RSC Chemical Biology, 2021, 2, 883-891.	4.1	24
14	Multienzyme Oneâ€Pot Cascades Incorporating Methyltransferases for the Strategic Diversification of Tetrahydroisoquinoline Alkaloids. Angewandte Chemie - International Edition, 2021, 60, 18673-18679.	13.8	23
15	Chorismate- and isochorismate converting enzymes: versatile catalysts acting on an important metabolic node. Chemical Communications, 2021, 57, 2441-2463.	4.1	19
16	Co-factor demand and regeneration in the enzymatic one-step reduction of carboxylates to aldehydes in cell-free systems. Journal of Biotechnology, 2020, 307, 202-207.	3.8	18
17	A Multi-Enzyme Cascade Reaction for the Production of 2′3′-cGAMP. Biomolecules, 2021, 11, 590.	4.0	18
18	Mechanistic Implications for the Chorismatase FkbO Based on the Crystal Structure. Journal of Molecular Biology, 2014, 426, 105-115.	4.2	15

JENNIFER N ANDEXER

#	Article	IF	CITATIONS
19	Chorismatase Mechanisms Reveal Fundamentally Different Types of Reaction in a Single Conserved Protein Fold. Journal of the American Chemical Society, 2015, 137, 11032-11037.	13.7	11
20	Single step syntheses of (1S)-aryl-tetrahydroisoquinolines by norcoclaurine synthases. Communications Chemistry, 2020, 3, .	4.5	10
21	Cinnamic acid derivatives as inhibitors for chorismatases and isochorismatases. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1477-1481.	2.2	9
22	In vitro production and purification of isochorismate using a two-enzyme cascade. Journal of Biotechnology, 2014, 191, 93-98.	3.8	8
23	Channeling C1 Metabolism toward S -Adenosylmethionine-Dependent Conversion of Estrogens to Androgens in Estrogen-Degrading Bacteria. MBio, 2020, 11, .	4.1	8
24	A Cobalaminâ€Dependent Radical SAM Enzyme Catalyzes the Unique C _α â€Methylation of Glutamine in Methylâ€Coenzymeâ€M Reductase. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
25	Multienzyme Oneâ€Pot Cascades Incorporating Methyltransferases for the Strategic Diversification of Tetrahydroisoquinoline Alkaloids. Angewandte Chemie, 2021, 133, 18821-18827.	2.0	7
26	Chorismatases – the family is growing. Organic and Biomolecular Chemistry, 2019, 17, 2092-2098.	2.8	6
27	Challenging nature's preference for methylation. Nature Chemistry, 2020, 12, 791-792.	13.6	6
28	A Cobalaminâ€Dependent Radical SAM Enzyme Catalyzes the Unique Cαâ€Methylation of Glutamine in Methylâ€Coenzyme M Reductase. Angewandte Chemie, 0, , .	2.0	0