
## Naoto Tsubouchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1550652/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Evaluation of mercury form in iron ore through sequential leaching and temperature-programmed heat treatment methods. Fuel, 2022, 308, 121953.                                                                                                                                 | 3.4 | Ο         |
| 2  | Evolution of Mercury from Iron Ores in Temperature-Programmed Heat Treatments. ISIJ International, 2022, 62, 20-28.                                                                                                                                                            | 0.6 | 1         |
| 3  | Influence of ammonia treatment on the CO2 adsorption of activated carbon. Journal of<br>Environmental Chemical Engineering, 2022, 10, 107273.                                                                                                                                  | 3.3 | 15        |
| 4  | Preparation and evaluation of activated carbon from low-rank coal <i>via</i> alkali activation and its fundamental CO <sub>2</sub> adsorption capacity at ambient temperature under pure pressurized CO <sub>2</sub> . Reaction Chemistry and Engineering, 2022, 7, 1429-1446. | 1.9 | 3         |
| 5  | Preparation of coke from biomass char modified by vapour deposition of tar generated during pyrolysis of woody biomass. Ironmaking and Steelmaking, 2022, 49, 646-657.                                                                                                         | 1.1 | 2         |
| 6  | Removal of hydrogen chloride from simulated coal gasification fuel gases using honeycomb-supported natural soda ash. Fuel, 2022, 317, 122231.                                                                                                                                  | 3.4 | 3         |
| 7  | Production of High-Strength Coke from Low-Quality Coals Chemically Modified with Thermoplastic Components. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2021, 107, 15-23.                                                                                 | 0.1 | 0         |
| 8  | Influence of Additive Amount and Heating Conditions on the Strength of Coke Prepared from<br>Non-Caking Coal. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2021, 107, 35-43.                                                                              | 0.1 | 0         |
| 9  | Mercury (II) ion adsorption performance of Cl-loaded carbonaceous material prepared by chlorination of pyrolyzed rice husk char. Journal of Cleaner Production, 2021, 305, 127176.                                                                                             | 4.6 | 5         |
| 10 | Strength and Gasification Reactivity of Coke Prepared by Blending a Ca/C Composite and Coal. ISIJ<br>International, 2021, 61, 2200-2210.                                                                                                                                       | 0.6 | 1         |
| 11 | Influence of Heating Conditions on the Strength of Coke Produced from Slightly-Caking Coal<br>Containing Chemically-Loaded Thermoplastic Components. Tetsu-To-Hagane/Journal of the Iron and<br>Steel Institute of Japan, 2021, 107, 24-34.                                    | 0.1 | 1         |
| 12 | Behavior of mercury release from iron ores during temperature-programmed heat treatment in air.<br>Environmental Science and Pollution Research, 2021, 28, 66496-66500.                                                                                                        | 2.7 | 0         |
| 13 | Quantum chemical study on adsorption of hydrogen chloride on Zn-doped carbon materials.<br>Environmental Technology and Innovation, 2020, 19, 100883.                                                                                                                          | 3.0 | 1         |
| 14 | Removal of hydrogen chloride gas using honeycomb-supported natural soda ash. Chemical<br>Engineering Research and Design, 2020, 156, 138-145.                                                                                                                                  | 2.7 | 6         |
| 15 | Effect of the electronic state on low-rank coals with Ca2+ ion exchange. Journal of Molecular<br>Structure, 2020, 1218, 128544.                                                                                                                                                | 1.8 | 2         |
| 16 | Electronic State of Low-Rank Coals with Exchanged Sodium Cations. ACS Omega, 2020, 5, 1688-1697.                                                                                                                                                                               | 1.6 | 1         |
| 17 | Separation of valuable elements from steel making slag by chlorination. Resources, Conservation and Recycling, 2020, 158, 104815.                                                                                                                                              | 5.3 | 14        |
| 18 | Production of high-strength and low-gasification reactivity coke from low-grade carbonaceous materials by vapor deposition of tar. Fuel Processing Technology, 2020, 203, 106384.                                                                                              | 3.7 | 3         |

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Production of Silicone Tetrachloride from Rice Husk by Chlorination and Performance of Mercury<br>Adsorption from Aqueous Solution of the Chlorinated Residue. ACS Omega, 2020, 5, 29110-29120.                                                                      | 1.6 | 5         |
| 20 | Thermal Properties of Carbon-Containing Iron Ore Composite Prepared by Vapor Deposition of Tar for<br>Limonite. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing<br>Science, 2019, 50, 2259-2272.                             | 1.0 | 3         |
| 21 | Preparation of pelletized coke by co-carbonization of caking coal and pyrolyzed char modified with tar produced during pyrolysis of woody biomass. Fuel Processing Technology, 2019, 193, 328-337.                                                                   | 3.7 | 17        |
| 22 | Removal of gangue components from low-grade iron ore by hydrothermal treatment.<br>Hydrometallurgy, 2019, 190, 105159.                                                                                                                                               | 1.8 | 6         |
| 23 | Upgrading Low-Grade Iron Ore through Gangue Removal by a Combined Alkali Roasting and<br>Hydrothermal Treatment. ACS Omega, 2019, 4, 19723-19734.                                                                                                                    | 1.6 | 9         |
| 24 | Gasification of carbon/carbon composite prepared from pyrolyzed char of low-grade coke and low-rank coal. Powder Technology, 2019, 355, 782-792.                                                                                                                     | 2.1 | 10        |
| 25 | Formation of surface chlorine species by low temperature reaction of HCl with metal-doped carbon.<br>Fuel, 2019, 246, 51-59.                                                                                                                                         | 3.4 | 15        |
| 26 | Influence of Heating Conditions on the Strength of Coke Produced from Slightly-Caking Coal<br>Containing Chemically-Loaded Thermoplastic Components. ISIJ International, 2019, 59, 1427-1436.                                                                        | 0.6 | 4         |
| 27 | Production of High-Strength Coke from Low-Quality Coals Chemically Modified with Thermoplastic Components. ISIJ International, 2019, 59, 1396-1403.                                                                                                                  | 0.6 | 7         |
| 28 | Evolution profile of gases during coal carbonization and relationship between their amounts and the fluidity or coke strength. Fuel, 2019, 237, 735-744.                                                                                                             | 3.4 | 15        |
| 29 | Influence of Additive Amount and Heating Conditions on the Strength of Coke Prepared from<br>Non-Caking Coal. ISIJ International, 2019, 59, 1419-1426.                                                                                                               | 0.6 | 2         |
| 30 | Steam Gasification of Low-Rank Coal with a Nanoscale Ca/Na Composite Catalyst Prepared by Ion Exchange. Energy & Fuels, 2018, 32, 226-232.                                                                                                                           | 2.5 | 10        |
| 31 | Influence of Inherently Present Oxygen-Functional Groups on Coal Fluidity and Coke Strength. Energy<br>& Fuels, 2018, 32, 1657-1664.                                                                                                                                 | 2.5 | 22        |
| 32 | Production of activated carbon from peat by with natural soda ash and effect of nitrogen addition on the development of surface area. Fuel Processing Technology, 2018, 176, 76-84.                                                                                  | 3.7 | 19        |
| 33 | Fate of Nitrogen and Sulfur during Reduction Process of Carbon-containing Pellet Prepared by Vapor<br>Deposition of Gaseous-Tar and the Influences of the Hetero Elements on the Reduction Behavior and<br>Crushing Strength. ISIJ International, 2018, 58, 460-468. | 0.6 | 5         |
| 34 | Fate of the Chlorine in Coal in the Heating Process. ISIJ International, 2018, 58, 227-235.                                                                                                                                                                          | 0.6 | 13        |
| 35 | Removal of Organic Sulfur in Hydrocarbon Liquid Model Fuel by Ni-Loaded Carbon Prepared from<br>Lignite. Energy & Fuels, 2018, 32, 12328-12336.                                                                                                                      | 2.5 | 2         |
| 36 | Catalytic effect of ion-exchanged calcium on steam gasification of low-rank coal with a circulating fluidized bed reactor. Fuel. 2018. 234. 406-413.                                                                                                                 | 3.4 | 17        |

| #  | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Low-Temperature Reactions of HCl with Metal-Doped Carbon. Energy & Fuels, 2018, 32, 6970-6977.                                                                                                                                                                                 | 2.5 | 4         |
| 38 | Influence of tarry material deposition on low-strength cokes or pyrolyzed chars of low rank coals on the strength. Fuel, 2018, 232, 780-790.                                                                                                                                   | 3.4 | 10        |
| 39 | Investigation of strength and reduction reactivity during heat treatment in simulated-experimental blast furnace of carbon-containing pellet prepared by vapor deposition of tar to cold-bonded pellet with large particle size. Fuel Processing Technology, 2018, 176, 21-32. | 3.7 | 14        |
| 40 | Some factors influencing the fluidity of coal blends: Particle size, blend ratio and inherent oxygen species. Fuel Processing Technology, 2017, 159, 67-75.                                                                                                                    | 3.7 | 22        |
| 41 | Steam Gasification of Low-Rank Coals with Ion-Exchanged Sodium Catalysts Prepared Using Natural<br>Soda Ash. Energy & Fuels, 2017, 31, 2565-2571.                                                                                                                              | 2.5 | 11        |
| 42 | Coprocessing of Pyrolytic Nitrogen Removal of Low-Rank Coals and Reduction of Limonite Ore.<br>Energy & Fuels, 2017, 31, 3885-3891.                                                                                                                                            | 2.5 | 4         |
| 43 | Catalytic Performance of Limonite Ores in the Decomposition of Model Compounds of Biomass-Derived Tar. Energy & Fuels, 2017, 31, 3898-3904.                                                                                                                                    | 2.5 | 7         |
| 44 | Preparation of a Carbon-Containing Pellet with High Strength and High Reactivity by Vapor Deposition of Tar to a Cold-Bonded Pellet. Energy & Fuels, 2017, 31, 8877-8885.                                                                                                      | 2.5 | 11        |
| 45 | Removal of Hydrogen Sulfide in Simulated Coke Oven Gas with Low-Grade Iron Ore. Energy &<br>Fuels, 2017, 31, 8087-8094.                                                                                                                                                        | 2.5 | 11        |
| 46 | Removal of Hydrogen Sulfide and Ammonia by Goethite-Rich Limonite in the Coexistence of Coke Oven<br>Gas Components. ISIJ International, 2017, 57, 435-442.                                                                                                                    | 0.6 | 5         |
| 47 | Fate of the Chlorine in Coal in the Heating Process. Tetsu-To-Hagane/Journal of the Iron and Steel<br>Institute of Japan, 2017, 103, 443-450.                                                                                                                                  | 0.1 | Ο         |
| 48 | Significant Evolution of Hydrogen Fluoride from Coal Chars after Apparently Complete Release of Carbon Dioxide. Energy & Fuels, 2016, 30, 4381-4383.                                                                                                                           | 2.5 | 2         |
| 49 | Preparation of Carbon-Containing Iron Ore with Enhanced Crushing Strength from Limonite by<br>Impregnation and Vapor Deposition of Tar Recovered from Coke Oven Gas. Energy & Fuels, 2016, 30,<br>6233-6239.                                                                   | 2.5 | 26        |
| 50 | Reactions of Hydrogen Chloride with Carbonaceous Materials and the Formation of Surface Chlorine Species. Energy & amp; Fuels, 2016, 30, 2320-2327.                                                                                                                            | 2.5 | 19        |
| 51 | Reduction behavior and crushing strength of carbon-containing pellet prepared from COG tar. Fuel Processing Technology, 2016, 142, 287-295.                                                                                                                                    | 3.7 | 18        |
| 52 | Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin. Applied Surface Science, 2016, 371, 301-306.                                                                                                                    | 3.1 | 68        |
| 53 | Reduction Rate and Crushing Strength of a Carbon-Containing Pellet Prepared by the Impregnation Method of COG Tar. Energy & amp; Fuels, 2016, 30, 2102-2110.                                                                                                                   | 2.5 | 10        |
| 54 | Influence of Inherent Oxygen Species on the Fluidity of Coal during Carbonization. Energy & Fuels, 2016, 30, 2095-2101.                                                                                                                                                        | 2.5 | 27        |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Catalytic Decomposition of Pyridine with Goethite-Rich Limonite in the Coexistence of Fuel Gas or<br>Coke Oven Gas Components. ISIJ International, 2016, 56, 1132-1137.                                   | 0.6 | 7         |
| 56 | Formation of molecular nitrogen and hydrogen sulfide during highâ€ŧemperature pyrolysis of coals.<br>Asia-Pacific Journal of Chemical Engineering, 2015, 10, 154-162.                                     | 0.8 | 2         |
| 57 | Reduction and Nitriding Behavior of Hematite with Ammonia. ISIJ International, 2015, 55, 736-741.                                                                                                         | 0.6 | 9         |
| 58 | Catalytic decomposition of pyridine gas with fine particles of metallic iron formed from limonite.<br>Applied Catalysis A: General, 2015, 499, 133-138.                                                   | 2.2 | 9         |
| 59 | High catalytic performance of magnesium cations-added limonite in the decomposition of ammonia in a simulated syngas-rich fuel gas. Journal of Molecular Catalysis A, 2015, 407, 75-80.                   | 4.8 | 15        |
| 60 | Chemical Characterization of Unburned Carbon in Coal Fly Ashes by Use of TPD/TPO and LRS Methods.<br>Environmental Science & Technology, 2015, 49, 5189-5194.                                             | 4.6 | 3         |
| 61 | Reduction behavior and crushing strength of carbon-containing iron ore sinters prepared from tar recovered from coke oven gas. Fuel Processing Technology, 2015, 138, 704-713.                            | 3.7 | 20        |
| 62 | Steam gasification of Indonesian subbituminous coal with calcium carbonate as a catalyst raw material. Fuel Processing Technology, 2015, 129, 91-97.                                                      | 3.7 | 60        |
| 63 | Fate of Boron and Selenium during Pulverized Coal Combustion. Kagaku Kogaku Ronbunshu, 2015, 41,<br>340-349.                                                                                              | 0.1 | 0         |
| 64 | Effects of Solid Residence Time and Inherent Metal Cations on the Fate of the Nitrogen in Coal during<br>Rapid Pyrolysis. Energy & Fuels, 2014, 28, 5721-5728.                                            | 2.5 | 13        |
| 65 | Synthesis of BaTiO <sub>3</sub> nanoparticles from TiO <sub>2</sub> -coated BaCO <sub>3</sub> particles derived using a wet-chemical method. Journal of Asian Ceramic Societies, 2014, 2, 68-76.          | 1.0 | 7         |
| 66 | Behavior of boron release and change in the occurrence mode of boron during fixed-bed pyrolysis of coals. Fuel, 2014, 130, 54-59.                                                                         | 3.4 | 4         |
| 67 | Sulfur and Nitrogen Distributions during Coal Carbonization and the Influences of These Elements on Coal Fluidity and Coke Strength. ISIJ International, 2014, 54, 2439-2445.                             | 0.6 | 19        |
| 68 | Adsorption Desulfurization of Organic Sulfur Compounds in Model Fuels by Ni-Loaded Carbon.<br>Kagaku Kogaku Ronbunshu, 2014, 40, 56-64.                                                                   | 0.1 | 2         |
| 69 | The fate of sulfur in coal during carbonization and its effect on coal fluidity. International Journal of Coal Geology, 2013, 120, 50-56.                                                                 | 1.9 | 23        |
| 70 | Catalytic effects of Na and Ca from inexpensive materials on in-situ steam gasification of char from rapid pyrolysis of low rank coal in a drop-tube reactor. Fuel Processing Technology, 2013, 113, 1-7. | 3.7 | 76        |
| 71 | Selective Recovery of Rare Earth Elements from Dy containing NdFeB Magnets by Chlorination. ACS Sustainable Chemistry and Engineering, 2013, 1, 655-662.                                                  | 3.2 | 45        |
| 72 | Evolution of Hydrogen Chloride and Change in the Chlorine Functionality during Pyrolysis of<br>Argonne Premium Coal Samples. Energy & Fuels, 2013, 27, 87-96.                                             | 2.5 | 43        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Fate of Coal-Bound Nitrogen during Carbonization of Caking Coals. Energy & Fuels, 2013, 27, 7330-7335.                                                                                                                            | 2.5  | 11        |
| 74 | Chlorine Release during Fixed-Bed Gasification of Coal Chars with Carbon Dioxide. Energy & Fuels, 2013, 27, 5076-5082.                                                                                                            | 2.5  | 19        |
| 75 | Functional Forms of Nitrogen and Sulfur in Coals and Fate of Heteroatoms during Coal<br>Carbonization. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2012, 98, 161-169.                                       | 0.1  | 7         |
| 76 | Iron-catalyzed nitrogen removal as N2 from PAN-derived activated carbon. Applied Catalysis B:<br>Environmental, 2012, 111-112, 614-620.                                                                                           | 10.8 | 12        |
| 77 | Catalytic decomposition of nitrogen-containing heterocyclic compounds with highly dispersed iron nanoparticles on carbons. Journal of Molecular Catalysis A, 2012, 356, 14-19.                                                    | 4.8  | 14        |
| 78 | Chemical forms of the fluorine and carbon in fly ashes recovered from electrostatic precipitators of pulverized coal-fired plants. Fuel, 2011, 90, 376-383.                                                                       | 3.4  | 28        |
| 79 | Chemical characterization of dust particles recovered from bag filters of electric arc furnaces for steelmaking: Some factors influencing the formation of hexachlorobenzene. Journal of Hazardous Materials, 2010, 183, 116-124. | 6.5  | 42        |
| 80 | Leaching Behavior of the Boron and Fluorine in Fly Ashes Formed in Pulverized Coal Combustion.<br>Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2010, 89, 1166-1172.                                          | 0.2  | 2         |
| 81 | Recent progress in Japan on hot gas cleanup of hydrogen chloride, hydrogen sulfide and ammonia in<br>coal-derived fuel gas. Powder Technology, 2009, 190, 340-347.                                                                | 2.1  | 99        |
| 82 | Sulfur tolerance of an inexpensive limonite catalyst for high temperature decomposition of ammonia.<br>Powder Technology, 2008, 180, 184-189.                                                                                     | 2.1  | 21        |
| 83 | Nitrogen chemistry in coal pyrolysis: Catalytic roles of metal cations in secondary reactions of volatile nitrogen and char nitrogen. Fuel Processing Technology, 2008, 89, 379-390.                                              | 3.7  | 72        |
| 84 | Catalytic Performance of Limonite in the Decomposition of Ammonia in the Coexistence of Typical Fuel<br>Gas Components Produced in an Air-Blown Coal Gasification Process. Energy & Fuels, 2007, 21,<br>3063-3069.                | 2.5  | 30        |
| 85 | Properties of Dust Particles Sampled from Windboxes of an Iron Ore Sintering Plant: Surface<br>Structures of Unburned Carbon. ISIJ International, 2006, 46, 1020-1026.                                                            | 0.6  | 21        |
| 86 | Catalytic decomposition of ammonia gas with metal cations present naturally in low rank coals. Fuel, 2005, 84, 1957-1967.                                                                                                         | 3.4  | 55        |
| 87 | High Catalytic Performance of Fine Particles of Metallic Iron Formed from Limonite in the<br>Decomposition of a Low Concentration of Ammonia. Catalysis Letters, 2005, 105, 203-208.                                              | 1.4  | 48        |
| 88 | Functional Forms of Carbon and Chlorine in Dust Samples Formed in the Sintering Process of Iron<br>Ores. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2005, 91, 751-756.                                     | 0.1  | 13        |
| 89 | Effect of Nitrogen-Containing Compounds on Polychlorinated Dibenzo-p-dioxin/Dibenzofuran<br>Formation through de Novo Synthesis. Environmental Science & Technology, 2005, 39, 795-799.                                           | 4.6  | 42        |
| 90 | Formation of Hydrogen Chloride during Temperature-Programmed Pyrolysis of Coals with Different<br>Ranks. Energy & Fuels, 2005, 19, 554-560.                                                                                       | 2.5  | 34        |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Decomposition of ammonia with iron and calcium catalysts supported on coal chars. Fuel, 2004, 83, 685-692.                                                                         | 3.4 | 97        |
| 92  | Effect of alkaline earth metals on N2 formation during fixed bed pyrolysis of a low rank coal. Fuel<br>Processing Technology, 2004, 85, 1039-1052.                                 | 3.7 | 9         |
| 93  | Novel utilization of mesoporous molecular sieves as supports of cobalt catalysts in Fischer–Tropsch synthesis. Catalysis Today, 2004, 89, 419-429.                                 | 2.2 | 77        |
| 94  | Several Distinct Types of HCl Evolution during Temperature-Programmed Pyrolysis of High-Rank Coals with Almost the Same Carbon Contents. Energy & amp; Fuels, 2004, 18, 1605-1606. | 2.5 | 15        |
| 95  | Carbon Crystallization during High-Temperature Pyrolysis of Coals and the Enhancement by Calcium.<br>Energy & Fuels, 2003, 17, 1119-1125.                                          | 2.5 | 138       |
| 96  | Nitrogen Release from Low Rank Coals during Rapid Pyrolysis with a Drop Tube Reactor. Energy &<br>Fuels, 2003, 17, 940-945.                                                        | 2.5 | 26        |
| 97  | Fischerâ^'Tropsch Synthesis with Cobalt Catalysts Supported on Mesoporous Silica for Efficient<br>Production of Diesel Fuel Fraction. Energy & Fuels, 2003, 17, 804-809.           | 2.5 | 55        |
| 98  | Nitrogen release during high temperature pyrolysis of coals and catalytic role of calcium in N2 formation. Fuel, 2002, 81, 2335-2342.                                              | 3.4 | 73        |
| 99  | Formation of N2 during pyrolysis of Ca-loaded coals. Fuel, 2002, 81, 1423-1431.                                                                                                    | 3.4 | 33        |
| 100 | Enhancement of N2Formation from the Nitrogen in Carbon and Coal by Calcium. Energy & Fuels, 2001, 15, 158-162.                                                                     | 2.5 | 58        |