Frederic Grillot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1550299/publications.pdf

Version: 2024-02-01

251 papers

3,406 citations

32 h-index 50 g-index

254 all docs

254 docs citations

times ranked

254

1825 citing authors

#	Article	IF	CITATIONS
1	Free-Space Communication With Directly Modulated Mid-Infrared Quantum Cascade Devices. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-9.	1.9	46
2	Competition between Entrainment Phenomenon and Chaos in a Quantum-Cascade Laser under Strong Optical Reinjection. Photonics, 2022, 9, 29.	0.9	2
3	Mid-infrared free-space cryptosystem. Nonlinear Theory and Its Applications IEICE, 2022, 13, 44-52.	0.4	2
4	Mid-infrared hyperchaos of interband cascade lasers. Light: Science and Applications, 2022, 11, 7.	7.7	22
5	10 Gbit s ^{â^'1} Free Space Data Transmission at 9µm Wavelength With Unipolar Quantum Optoelectronics (Laser Photonics Rev. 16(2)/2022). Laser and Photonics Reviews, 2022, 16, .	4.4	1
6	A review of recent results of mid-infrared quantum cascade photonic devices operating under external optical control. JPhys Photonics, 2022, 4, 022001.	2.2	3
7	Modeling of Amplitude Squeezing in a Pump-Noise-Suppressed Interband Cascade Laser. IEEE Photonics Journal, 2022, 14, 1-8.	1.0	5
8	Spectral dispersion of the linewidth enhancement factor and four wave mixing conversion efficiency of an InAs/GaAs multimode quantum dot laser. Applied Physics Letters, 2022, 120, .	1.5	6
9	Effects of external optical feedback in InAs/InP quantum dot frequency comb lasers on silicon. , 2022, , .		0
10	High-definition video broadcasting with a room-temperature quantum cascade laser emitting in the long-wave infrared domain. , 2022, , .		1
11	Chaos-based mid-infrared communications. , 2022, , .		0
12	Multimode Physics in the Mode Locking of Semiconductor Quantum Dot Lasers. Applied Sciences (Switzerland), 2022, 12, 3504.	1.3	6
13	Reflection sensitivity of InAs/GaAs epitaxial quantum dot lasers under direct modulation. Electronics Letters, 2022, 58, 363-365.	0.5	1
14	10 Gbit s ^{â-'1} Free Space Data Transmission at 9ÂÂμm Wavelength With Unipolar Quantum Optoelectronics. Laser and Photonics Reviews, 2022, 16, .	4.4	35
15	Analysis of the Spontaneous Emission Limited Linewidth of an Integrated III–V/SiN Laser (Laser) Tj ETQq1 1 0.7	843]4 rgB	T Overlock
16	Dynamic and nonlinear properties of epitaxial quantum-dot lasers on silicon operating under longand short-cavity feedback conditions for photonic integrated circuits. Physical Review A, 2021, 103, .	1.0	15
17	Dynamics of epitaxial quantum dot laser on silicon subject to chip-scale back-reflection for isolator-free photonics integrated circuits., 2021,,.		0
18	Private communication with quantum cascade laser photonic chaos. Nature Communications, 2021, 12, 3327.	5.8	55

#	Article	IF	Citations
19	Effect of Shockley-Read-Hall recombination on the static and dynamical characteristics of epitaxial quantum-dot lasers on silicon. Physical Review A, 2021, 103, .	1.0	6
20	Uncovering recent progress in nanostructured light-emitters for information and communication technologies. Light: Science and Applications, 2021, 10, 156.	7.7	25
21	Modeling of a quantum dot gain chip in an external cavity laser configuration. Laser Physics, 2021, 31, 085002.	0.6	3
22	Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch. Photonics Research, 2021, 9, 1550.	3.4	11
23	Stimulating polarization switching dynamics in mid-infrared quantum cascade lasers. Journal of the Optical Society of America B: Optical Physics, 2021, 38, B35.	0.9	2
24	Chaos synchronization in mid-infrared quantum cascade lasers for private free-space communication. , 2021, , .		0
25	Perspectives on Advances in Quantum Dot Lasers and Integration with Si Photonic Integrated Circuits. ACS Photonics, 2021, 8, 2555-2566.	3.2	67
26	Recent progress in quantum dot distributed feedback lasers with large wavelength detuning for uncooled and isolation-free applications. , 2021 , , .		0
27	Relative intensity noise and intrinsic properties of RF mounted interband cascade laser. Applied Physics Letters, 2021, 119, .	1.5	10
28	The above-threshold linewidth enhancement factor of silicon-based quantum dot lasers. , 2021, , .		0
29	Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback. APL Photonics, 2020, 5, .	3.0	32
30	Dynamic properties of two-state lasing quantum dot laser for external optical feedback resistant applications. , 2020, , .		1
31	Optical Noise of Dual-State Lasing Quantum Dot Lasers. IEEE Journal of Quantum Electronics, 2020, 56, 1-7.	1.0	17
32	Temperature dependent linewidth rebroadening in quantum dot semiconductor lasers. Journal Physics D: Applied Physics, 2020, 53, 235106.	1.3	2
33	High coherence collapse of a hybrid III–V/Si semiconductor laser with a large quality factor. JPhys Photonics, 2020, 2, 025005.	2.2	6
34	Spectral linewidth reduction of quantum cascade lasers by strong optical feedback. Journal of Applied Physics, 2020, 127, .	1.1	9
35	1.3-Âμm passively mode-locked quantum dot lasers epitaxially grown on silicon: gain properties and optical feedback stabilization. JPhys Photonics, 2020, 2, 045006.	2.2	11
36	Quantum dot lasers based photonics integrated circuits. , 2020, , .		3

#	Article	IF	CITATIONS
37	Extreme events in quantum cascade lasers. Advanced Photonics, 2020, 2, .	6.2	17
38	Towards private optical communications with mid-infrared chaotic light. , 2020, , .		5
39	Effect of p-doping on the intensity noise of epitaxial quantum dot lasers on silicon. Optics Letters, 2020, 45, 4887.	1.7	21
40	Physics and applications of quantum dot lasers for silicon photonics. Nanophotonics, 2020, 9, 1271-1286.	2.9	38
41	Systematic investigation of the influencing parameters of an external cavity laser with a quantum dot gain chip. , 2020, , .		0
42	All-optical modulation at mid-infrared wavelength with QCLs. , 2020, , .		0
43	Frequency-domain modeling of semiconductor mode lock lasers. , 2020, , .		0
44	An Indirect Determination of the Polarization Anisotropy in a Quantum Cascade Laser Under Strong Cross-Polarization Feedback. , 2020, , .		0
45	Tunable All-Optical Modulation and Building Blocks for Optical Neurons at Mid-Infrared Wavelength. , 2020, , .		0
46	Excitability in Mid-Infrared Quantum Cascade Lasers: from Communication Jamming to Neuromorphic Photonics. , 2020, , .		0
47	Uncovering reflection insensitive semiconductor lasers for silicon photonic integration. , 2020, , .		0
48	Frequency comb dynamics of a 13µm hybrid-silicon quantum dot semiconductor laser with optical injection: erratum. Optics Letters, 2020, 45, 856.	1.7	0
49	Epitaxial integration of high-performance quantum-dot lasers on silicon. , 2020, , .		3
50	Peculiarities and predictions of rogue waves in mid-infrared quantum cascade lasers under conventional optical feedback., 2020,,.		0
51	P-doping effect on external optical feedback dynamics in 1.3 -microns InAs/GaAs quantum dot laser epitaxially grown on silicon. , 2020 , , .		2
52	Influence of the polarization anisotropy on the linewidth enhancement factor and reflection sensitivity of 1.55- $<$ b> $<$ i> $>$ 1 $>$ 4 $<$ 1> $>$ m InP-based InAs quantum dash lasers. Applied Physics Letters, 2019, 115, .	1.5	11
53	Enhanced Chaotic Performance with Optically Injected Quantum Cascade Lasers. , 2019, , .		0
54	1.3- <inline-formula> <tex-math notation="LaTeX">\$mu\$ </tex-math> </inline-formula> m Reflection Insensitive InAs/GaAs Quantum Dot Lasers Directly Grown on Silicon. IEEE Photonics Technology Letters, 2019, 31, 345-348.	1.3	83

#	Article	IF	Citations
55	Intensity Noise and Pulse Oscillations of an InAs/GaAs Quantum Dot Laser on Germanium. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-10.	1.9	3
56	Chaotic optical power dropouts driven by low frequency bias forcing in a mid-infrared quantum cascade laser. Scientific Reports, 2019, 9, 4451.	1.6	14
57	Investigation of Chaotic and Spiking Dynamics in Mid-Infrared Quantum Cascade Lasers Operating Continuous-Waves and Under Current Modulation. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-11.	1.9	18
58	10 Gbps Error-Free Transmission of a High Coherent Si/III-V Hybrid Distributed Feedback Laser under Strong Optical Feedback. , 2019, , .		1
59	Thermally insensitive determination of the chirp parameter of InAs/GaAs quantum dot lasers epitaxially grown onto silicon. , 2019, , .		1
60	Extensive study of the linewidth enhancement factor of a distributed feedback quantum cascade laser at ultra-low temperature. , 2019, , .		6
61	Study of short and mid-wavelength infrared telecom links performance for different climatic conditions. , 2019, , .		4
62	Frequency comb dynamics of a 13  μm hybrid-silicon quantum dot semiconductor laser with optical injection. Optics Letters, 2019, 44, 5755.	1.7	18
63	Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration. Photonics Research, 2019, 7, 1222.	3.4	27
64	High frequency dynamics in quantum cascade lasers : a roadmap to free-space communications in the mid-infrared. , $2019, \dots$		0
65	Controlling the Likelihood of Extreme Pulses in a Quantum Cascade Laser with Optical Feedback and Bias Perturbation. , 2019, , .		0
66	Square Wave Emission in a Mid-infrared Quantum Cascade Oscillator Under Rotated Polarization. , 2019, , .		1
67	Linewidth broadening factor and optical feedback sensitivity of silicon based quantum dot lasers. , 2019, , .		0
68	Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers. Applied Physics Letters, 2018, 112, .	1.5	44
69	Low Linewidth Enhancement Factor and High Optical Feedback Resistance of p-Doped Silicon Based Quantum Dot Lasers. , 2018, , .		1
70	Dynamic and Noise Properties of High-Q Hybrid Laser. , 2018, , .		3
71	Carrier-Noise-Enhanced Relative Intensity Noise of Quantum Dot Lasers. IEEE Journal of Quantum Electronics, 2018, 54, 1-7.	1.0	26
72	Utilizing the Complex Dynamics of InAs/GaAs Quantum Dot lasers for Ultrafast Devices. , 2018, , .		0

#	Article	IF	Citations
73	Design, Fabrication and Characterization of Hybrid III-V/SOI Phase-Shift Free DFB Laser with Tapered Silicon Waveguide. , 2018 , , .		1
74	Low-frequency fluctuations of a mid-infrared quantum cascade laser operating at cryogenic temperatures. Laser Physics Letters, 2018, 15, 116201.	0.6	16
75	Introduction to the Issue on Physics and Applications of Laser Dynamics (IS-PALD 2017). Optics Express, 2018, 26, 21375.	1.7	0
76	Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states. Optics Letters, 2018, 43, 210.	1.7	18
77	Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor. Applied Physics Letters, 2018, 112, .	1.5	63
78	Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: transition from short- to long-delay regimes. Optics Express, 2018, 26, 1743.	1.7	23
79	Rate equation modeling of the frequency noise and the intrinsic spectral linewidth in quantum cascade lasers. Optics Express, 2018, 26, 2325.	1.7	22
80	Frequency noise suppression of optical injection-locked quantum cascade lasers. Optics Express, 2018, 26, 15167.	1.7	19
81	Experimental investigation of broad area quantum cascade lasers under external feedback. Optics Express, 2018, 26, 17927.	1.7	3
82	Relative intensity noise properties of quantum dot lasers. , 2018, , .		3
83	Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2780.	0.9	56
84	10-Gb/s Floor-Free Transmission of a Hybrid III-V on Silicon Distributed Feedback Laser with Optical Feedback. , 2018, , .		0
85	Influence of the upper nonlasing state on the route to chaos of InAs/GaAs quantum dot lasers. , 2018, ,		0
86	The Effect of Temperature on the Dynamical States of a Time Delayed Mid-infrared Quantum Cascade Oscillator. , 2018, , .		0
87	Temperature dependence of a mid-infrared quantum cascade laser with external optical feedback. , $2018, \ldots$		0
88	Ultrafast and nonlinear dynamics of InAs/GaAs semiconductor quantum dot lasers. , 2018, , .		0
89	Temperature dependence of spectral linewidth of lnAs/lnP quantum dot distributed feedback lasers. , 2018, , .		0
90	Large-signal capabilities of an optically injection-locked semiconductor laser using gain lever. , 2018, , .		0

#	Article	IF	CITATIONS
91	Talbot coupling of an array of quantum cascade lasers. , 2018, , .		2
92	Recent advances in InAs/GaAs quantum dot lasers with short optical feedback. , 2018, , .		0
93	Beam steering in quantum cascade lasers with optical feedback. , 2017, , .		2
94	Wideband chaos in hybrid III-V/silicon distributed feedback semiconductor lasers under optical feedback., 2017,,.		1
95	Linewidth Rebroadening in Quantum Dot Semiconductor Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-10.	1.9	11
96	Beam shaping in high-power broad-area quantum cascade lasers using optical feedback. Scientific Reports, 2017, 7, 44284.	1.6	13
97	Passive Chaos Bandwidth Enhancement Under Dual-Optical Feedback with Hybrid III–V/Si DFB Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-9.	1.9	18
98	Long delay optical feedback sensitivity of hybrid III-V/SOI directly modulated DFB lasers. , 2017, , .		0
99	Effects of gain nonlinearities in an optically injected gain lever semiconductor laser. Photonics Research, 2017, 5, 315.	3.4	2
100	Controllable rare events in optically-injected semiconductor lasers. , 2017, , .		0
101	Complex delay dynamics of high power quantum cascade oscillators. , 2017, , .		1
102	Contribution of off-resonant states to the phase noise of quantum dot lasers. Optics Express, 2016, 24, 29872.	1.7	26
103	Low Phase Noise Quantum Dot Lasers for Coherent Communication Networks. , 2016, , .		0
104	Chaotic light at mid-infrared wavelength. Light: Science and Applications, 2016, 5, e16088-e16088.	7.7	65
105	Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states. AIP Advances, 2016, 6, 125114.	0.6	19
106	Measurements of the linewidth enhancement factor of mid-infrared quantum cascade lasers by different optical feedback techniques. AIP Advances, 2016, 6, .	0.6	38
107	Efficiency of four-wave mixing in injection-locked InAs/GaAs quantum-dot lasers. AIP Advances, 2016, 6, 125105.	0.6	5
108	Estimating optical feedback from a chalcogenide fiber in mid-infrared quantum cascade lasers. AIP Advances, 2016, 6, 105201.	0.6	2

#	Article	IF	Citations
109	Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking. Scientific Reports, 2016, 6, 27825.	1.6	27
110	InAs/GaAs excited state quantum-dot transmitters operating under long-delayed optical feedback. , 2016, , .		0
111	Dynamics of Hybrid III-V Silicon Semiconductor Lasers for Integrated Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 43-49.	1.9	14
112	Optical nonlinearities in InAs/GaAs injection-locked quantum dot light-based emitters. Proceedings of SPIE, $2016, \ldots$	0.8	0
113	Linewidth broadening factor and gain compression in quantum cascade lasers. Proceedings of SPIE, 2016, , .	0.8	2
114	Deterministic temporal chaos from a mid-infrared external cavity quantum cascade lasers. , 2016, , .		1
115	Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation. Optics Letters, 2016, 41, 1153.	1.7	45
116	Dynamics of optically-injected semiconductor nanolasers. Proceedings of SPIE, 2016, , .	0.8	0
117	Gain compression effect on the modulation dynamics of an optically injection-locked semiconductor laser using gain lever. , 2016, , .		1
118	From Basic Physical Properties of InAs/InP Quantum Dots to State-of-the-Art Lasers for 1.55 µm Optical Communications. Advances in Materials Science and Engineering, 2016, , 95-125.	0.4	4
119	Dynamics of Excited-State InAs/GaAs Fabry-Perot Quantum-Dot Lasers under Optical Feedback. , 2016, , .		1
120	Experimental investigation of the above-threshold linewidth broadening factor of a mid-infrared quantum cascade laser. , 2015 , , .		0
121	Highly efficient non-degenerate four-wave mixing under dual-mode injection in InP/InAs quantum-dash and quantum-dot lasers at 1.55 <i>μ</i> m. Applied Physics Letters, 2015, 107, .	1.5	10
122	Time Resolved Chirp Measurement Based on a Polarization-Maintaining Fiber. IEEE Photonics Technology Letters, 2015, 27, 1557-1560.	1.3	1
123	Nonlinear dynamics of quantum cascade lasers with optical feedback. Proceedings of SPIE, 2015, , .	0.8	3
124	Nonlinear conversion efficiency of InAs/InP nanostructured Fabry-Perot lasers. Proceedings of SPIE, 2015, , .	0.8	0
125	Corrections to "Enhancement of the Modulation Dynamics of an Optically Injection-Locked Semiconductor Laser Using Gain Lever― IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 792-792.	1.9	1
126	Non-linear and dynamic properties of MOVPE-grown InAs/InP quantum-dot and quantum-dash Fabry-Perot lasers. , 2015, , .		0

#	Article	IF	CITATIONS
127	Highly efficient wavelength conversion in InAs/GaAs quantum dot lasers. , 2015, , .		O
128	Dispersion uncompensated IM/DD transmissions of 12GHz-wide multi-band OFDM over 100km with a D-EML. , 2015, , .		1
129	Optical feedback sensitivity of hybrid Ill–V silicon lasers. , 2015, , .		0
130	Enhancement of the Modulation Dynamics of an Optically Injection-Locked Semiconductor Laser Using Gain Lever. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 575-582.	1.9	1
131	Periodic and aperiodic pulse generation using optically injected DFB laser. Electronics Letters, 2015, 51, 280-282.	0.5	9
132	Non-degenerate four-wave mixing in an optically injection-locked InAs/InP quantum dot Fabry–Perot laser. Applied Physics Letters, 2015, 106, .	1.5	18
133	Analysis of dual-mode lasing characteristics in a 1310-nm optically injected quantum dot distributed feedback laser., 2015 ,.		0
134	Modulation-Frequency Dependence of the Phase-Amplitude Coupling in Quantum Dot Lasers. , 2015, , .		0
135	Influence of inhomogeneous broadening on the dynamics of quantum dot lasers. , 2015, , .		1
136	Frequency-dependent linewidth enhancement factor of optical injection-locked quantum dot/dash lasers. Optics Express, 2015, 23, 21761.	1.7	7
137	A Novel Method for Extracting the Linewidth Broadening Factor of Semiconductor Lasers. , 2015, , .		0
138	Amplitude Modulation and Frequency Chirp of an Injection-Locked Quantum Dash Semiconductor Laser., 2014,,.		0
139	Nondegenerate four-wave mixing in a dual mode injection locked quantum dot laser. Proceedings of SPIE, 2014, , .	0.8	0
140	Impact of Absorber Bias Voltage on the Optical Feedback Sensitivity of a Passively Mode-Locked Quantum Dot Laser Operating at Elevated Temperature. , 2014, , .		0
141	Phase-amplitude coupling of optically-injected nanostructured semiconductor lasers. , 2014, , .		0
142	Linewidth enhancement factor in semiconductor lasers subject to various external optical feedback conditions. Optics Express, 2014, 22, 5651.	1.7	15
143	Self-referenced technique for monitoring and analysing the non-linear dynamics of semiconductor lasers. Optics Express, 2014, 22, 16528.	1.7	0
144	Strong optical injection and the differential gain in a quantum dash laser. Optics Express, 2014, 22, 7222.	1.7	18

#	Article	IF	CITATIONS
145	Introduction to the issue on Physics and Applications of Laser Dynamics (IS-PALD 2013). Optics Express, 2014, 22, 7362.	1.7	1
146	Phase-amplitude coupling characteristics in directly modulated quantum dot lasers. Applied Physics Letters, 2014, 105, 221114.	1.5	18
147	Regimes of external optical feedback in 5.6 <i>μ</i> m distributed feedback mid-infrared quantum cascade lasers. Applied Physics Letters, 2014, 105, .	1.5	33
148	Tuning the external optical feedback-sensitivity of a passively mode-locked quantum dot laser. Applied Physics Letters, 2014, 105, 041112.	1.5	3
149	Impact of the gain model on the stability assessment in semiconductor DFB lasers. , 2014, , .		1
150	Predicting modes of operation in quantum dot mode-locked lasers using a delay differential equation model., 2014,,.		0
151	Rate equation analysis of frequency chirp in optically injection-locked quantum cascade lasers. , 2014, , .		1
152	Analysis of frequency chirp of selfâ€injected nanostructure semiconductor lasers. IET Optoelectronics, 2014, 8, 51-57.	1.8	1
153	Corrections to "Enhanced Dynamic Performance of Quantum Dot Semiconductor Lasers Operating on the Excited State―[Sep 14 723-731]. IEEE Journal of Quantum Electronics, 2014, 50, 1072-1072.	1.0	1
154	Nondegenerate Four-Wave Mixing in a Dual-Mode Injection-Locked InAs/InP(100) Nanostructure Laser. IEEE Photonics Journal, 2014, 6, 1-8.	1.0	9
155	Enhanced Dynamic Performance of Quantum Dot Semiconductor Lasers Operating on the Excited State. IEEE Journal of Quantum Electronics, 2014, 50, 1-9.	1.0	38
156	Near-threshold relaxation dynamics of a quantum dot laser. Proceedings of SPIE, 2014, , .	0.8	1
157	High Performance Excited-State Nanostructure Lasersâ€"Modulation Response, Frequency Chirp and Linewidth Enhancement Factor. , 2014, , .		O
158	Control of dynamical instability in semiconductor quantum nanostructures diode lasers: Role of phase-amplitude coupling. European Physical Journal: Special Topics, 2013, 222, 813-820.	1.2	15
159	Systematic investigation of the temperature behavior of InAs/InP quantum nanostructure passively mode-locked lasers. Proceedings of SPIE, 2013, , .	0.8	1
160	Photonics based on carbon nanotubes. Nanoscale Research Letters, 2013, 8, 300.	3.1	2
161	Pulse Characterization of Passively Mode-Locked Quantum-Dot Lasers Using a Delay Differential Equation Model Seeded With Measured Parameters. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1100311-1100311.	1.9	10
162	Modulation Properties of Self-Injected Quantum-Dot Semiconductor Diode Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1900812-1900812.	1.9	33

#	Article	IF	Citations
163	Intensity modulation response of injection-locked quantum cascade lasers., 2013,,.		2
164	Rate equation analysis of injection-locked quantum cascade lasers. Journal of Applied Physics, 2013, 113, 063104.	1.1	38
165	Bandwidth and dynamic range of a pulsed local oscillator coherent optical receiver: application to the linear optical sampling. Proceedings of SPIE, 2013, , .	0.8	1
166	Modulation properties of optically injection-locked quantum cascade lasers. Optics Letters, 2013, 38, 1975.	1.7	26
167	Impacts of carrier capture and relaxation rates on the modulation response of injection-locked quantum dot lasers. , 2013 , , .		2
168	Nonlinear dynamics and modulation properties of optically injected quantum cascade lasers. , 2013, , .		3
169	Differential gain enhancement in a quantum dash laser using strong optical injection. Proceedings of SPIE, 2013, , .	0.8	2
170	Modeling and characterization of pulse shape and pulse train dynamics in two-section passively mode-locked quantum dot lasers. Proceedings of SPIE, 2013, , .	0.8	1
171	Self-injected semiconductor distributed feedback lasers for frequency chirp stabilization. Optics Express, 2012, 20, 26062.	1.7	10
172	GaAs-Based Quantum Dot Lasers. Semiconductors and Semimetals, 2012, 86, 371-417.	0.4	31
173	Delay differential equation-based modeling of passively mode-locked quantum dot lasers using measured gain and loss spectra. Proceedings of SPIE, 2012, , .	0.8	2
174	Frequency chirp stabilization in semiconductor distributed feedback lasers with external control. , 2012, , .		1
175	Carrier escape from ground state and non-zero resonance frequency at low bias powers for semiconductor quantum-dot lasers. , 2012, , .		1
176	Impacts of Wetting Layer and Excited State on the Modulation Response of Quantum-Dot Lasers. IEEE Journal of Quantum Electronics, 2012, 48, 1144-1150.	1.0	58
177	20 GHz to 83 GHz single section InAs/InP quantum dot mode-locked lasers grown on (001) misoriented substrate. , 2012, , .		1
178	Influence of facet phases on adiabatic chirp behavior of index-coupled distributed-feedback lasers. , 2012, , .		0
179	Modelling the gain compression effects on semiconductor quantum-dot laser through a new modulation transfer function. , 2012, , .		2
180	Dual-mode quantum dot laser operating in the excited state., 2011,,.		0

#	Article	IF	CITATIONS
181	Influence of the linewidth enhancement factor on the modulation response of a nanostructure-based semiconductor laser operating under external optical feedback., 2011,,.		3
182	RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback. IET Optoelectronics, 2011, 5, 105-109.	1.8	5
183	Measuring the Chirp and the Linewidth Enhancement Factor of Optoelectronic Devices with a Mach–Zehnder Interferometer. IEEE Photonics Journal, 2011, 3, 476-488.	1.0	63
184	Microwave Characterization and Stabilization of Timing Jitter in a Quantum-Dot Passively Mode-Locked Laser via External Optical Feedback. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1311-1317.	1.9	58
185	PERFORMANCE OF A QUANTUM DOT PASSIVELY MODE-LOCKED LASER UNDER OPTICAL FEEDBACK AND TEMPERATURE CONTROL. International Journal of High Speed Electronics and Systems, 2011, 20, 679-685.	0.3	1
186	Enhanced Properties in Single-Walled Carbon Nanotubes Based Saturable Absorber for All Optical Signal Regeneration. Japanese Journal of Applied Physics, 2011, 50, 040206.	0.8	2
187	Direct characterization of carrier relaxation in a passively mode-locked quantum dot laser. , 2011, , .		O
188	Simultaneous low linewidth enhancement factor and high bandwidth quantum-dash injection-locked laser. , 2011, , .		0
189	A dual-mode quantum dot laser operating in the excited state. Applied Physics Letters, 2011, 99, 231110.	1.5	21
190	Enhanced Properties in Single-Walled Carbon Nanotubes Based Saturable Absorber for All Optical Signal Regeneration. Japanese Journal of Applied Physics, 2011, 50, 040206.	0.8	1
191	Ultra-low RF Linewidth in a Quantum Dot Mode-Locked Laser Under External Optical Feedback Stabilization. , 2010, , .		O
192	A direct comparison of single-walled carbon nanotubes and quantum-wells based subpicosecond saturable absorbers for all optical signal regeneration at 1.55â€,μm. Applied Physics Letters, 2010, 96, .	1.5	12
193	rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback. Applied Physics Letters, 2010, 96, .	1.5	60
194	10-GHz 1.59 - $\hat{1}$ $\frac{1}{4}$ m quantum dash passively mode-locked two-section lasers. Proceedings of SPIE, 2010, , .	0.8	3
195	Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser. Optics Express, 2010, 18, 21932.	1.7	26
196	Two-color multi-section quantum dot distributed feedback laser. Optics Express, 2010, 18, 27028.	1.7	52
197	QD laser on InP substrate for 1.55 $\hat{l}^1\!\!/\!4$ m emission and beyond. Proceedings of SPIE, 2010, , .	0.8	1
198	Measuring the linewidth enhancement factor of optoelectronics devices based on a Mach-Zehnder interferometer. , 2010, , .		0

#	Article	IF	Citations
199	Two-color quantum-dot DFB laser for terahertz applications. , 2010, , .		O
200	Manipulation of the linewidth enhancement factor in an injection-locked Quantum-Dash Fabry-Perot laser at 1550nm. , 2010, , .		2
201	Characterization of timing jitter in a quantum dot passively mode-locked laser at low offset frequency. , 2010, , .		1
202	Analysis of carriers dynamics and laser emission in 1.55-Î1/4m InAs/InP(113)B quantum dot lasers. Proceedings of SPIE, 2010, , .	0.8	1
203	Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser. Applied Physics Letters, 2009, 94, 153503.	1.5	39
204	Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique. Applied Physics Letters, 2009, 94, 081107.	1.5	19
205	Influence of the Linewidth Enhancement Factor on the Critical Feedback Level in a Quantum Dash Laser., 2009,,.		0
206	Effects of Optical Feedback in InAs/GaAs Monolithic Quantum Dot Passively Mode-Locked Lasers. , 2009, , .		0
207	Low-threshold current density InAs quantum dash lasers on InP (100) grown by molecular beam epitaxy. Electronics Letters, 2009, 45, 50.	0.5	5
208	Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 563-571.	1.9	60
209	Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2217-2221.	0.8	6
210	Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 \$mu\$m. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 764-773.	1.9	35
211	Temperature effects on the modulation response of an injection-locked InAs/InP Quantum-Dash laser. , 2009, , .		0
212	On the Effects of an Antireflection Coating Impairment on the Sensitivity to Optical Feedback of AR/HR Semiconductor DFB Lasers. IEEE Journal of Quantum Electronics, 2009, 45, 720-729.	1.0	27
213	Spectral Analysis of 1.55-\$mu\$m InAs–InP(113)B Quantum-Dot Lasers Based on a Multipopulation Rate Equations Model. IEEE Journal of Quantum Electronics, 2009, 45, 872-878.	1.0	63
214	Tuning of the critical feedback level in 1.55 - \hat{l} 4m quantum dash semiconductor laser diodes. IET Optoelectronics, 2009, 3, 242-247.	1.8	4
215	Theoretical analysis of $1.55-\hat{l}\frac{1}{4}$ m InAs/InP (113B) quantum dot lasers based on a multi-population rate equation model. Proceedings of SPIE, 2009, , .	0.8	2
216	Systematic investigation of the alpha parameter influence on the critical feedback level in QD lasers. Proceedings of SPIE, 2009, , .	0.8	1

#	Article	IF	CITATIONS
217	Modulation response of an injection locked quantum-dash Fabry Perot laser at 1550nm. Proceedings of SPIE, 2009, , .	0.8	O
218	Methods for Improved 3dB bandwidth in an Injection-Locked QDash Fabry Perot Laser @ 1550nm. , 2009, , .		0
219	Lasing spectra of $1.55 \hat{A} \hat{1}/4 \text{m}$ InAs/InP quantum dot lasers: theoretical analysis and comparison with the experiments. Optical and Quantum Electronics, 2008, 40, 227-237.	1.5	9
220	Gain Compression and Above-Threshold Linewidth Enhancement Factor in 1.3-\$muhbox{m}\$ InAs–GaAs Quantum-Dot Lasers. IEEE Journal of Quantum Electronics, 2008, 44, 946-951.	1.0	92
221	Influence of waveguide geometry on scattering loss effects in submicron strip silicon-on-insulator waveguides. IET Optoelectronics, 2008, 2, 1-5.	1.8	14
222	Dynamic properties of InAs/InP (311)B quantum dot lasers emitting at 1.52 & amp; #x03BC; m., 2008, , .		0
223	Dynamic properties of InAsâ^•InP (311)B quantum dot Fabry–Perot lasers emitting at 1.52μm. Applied Physics Letters, 2008, 93, .	1.5	34
224	Variation of the critical feedback level in a 1550nm quantum-dash Fabry-Perot semiconductor laser. , 2008, , .		0
225	Study of the characteristics of 1.55î½m quantum dash/dot semiconductor lasers on InP substrate. Applied Physics Letters, 2008, 93, 161104.	1.5	22
226	Variation of the feedback sensitivity in a 1.55â€,î¼m InAs/InP quantum-dash Fabry–Perot semiconductor laser. Applied Physics Letters, 2008, 93, 191108.	1.5	37
227	1516â€nm room temperature CW operation of quantum dot InAs/InP(311)B singlemode laser. Electronics Letters, 2007, 43, 571.	0.5	1
228	First demonstration of a 1.52 µm RT InAs/InP(3 1 1)B laser with an active zone based on a single QD layer Semiconductor Science and Technology, 2007, 22, 827-830.	ef:o	10
229	Linewidth Enhancement Factor of Semiconductor Lasers: Results from Round-Robin Measurements in COST 288., 2007, , .		8
230	Analysis of the Double Laser Emission Occurring in 1.55-\$mu{hbox {m}}\$ InAsâ€"InP (113)B Quantum-Dot Lasers. IEEE Journal of Quantum Electronics, 2007, 43, 810-816.	1.0	62
231	Demonstration of $1.51 \hat{A} \mu m$ InAs/InP(311)B quantum dot single-mode laser operating under continuous wave. IET Optoelectronics, 2007, 1, 255-258.	1.8	3
232	Demonstration of a Low Threshold Current in 1.54 ${\rm \hat{A}\mu m}$ InAs/InP(311)B Quantum Dot Laser with Reduced Quantum Dot Stacks. Japanese Journal of Applied Physics, 2007, 46, 6903-6905.	0.8	25
233	Temperature and pressure dependence of the recombination processes in 1.5ν m InAs∕InP (311)B quantum dot lasers. Applied Physics Letters, 2007, 91, 131113.	1.5	20
234	Tolerance to Optical Feedback of 10 GBPs Quantum-Dash Based Lasers Emitting at 1.55 & amp; $\#$ x003BC; m. , 2007, , .		2

#	Article	IF	Citations
235	Tolerance to Optical Feedback of 10-Gb/s Quantum-Dash-Based Lasers Emitting at 1.51 \$mu\$m. IEEE Photonics Technology Letters, 2007, 19, 1181-1183.	1.3	23
236	Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides. Journal of Lightwave Technology, 2006, 24, 891-896.	2.7	79
237	Light injection in SOI microwaveguides using high-efficiency grating couplers. Journal of Lightwave Technology, 2006, 24, 3810-3815.	2.7	91
238	Facet phase effects on the coherence collapse threshold of 1.55 Î1/4m AR/HR distributed feedback semiconductor lasers. , 2006, , .		0
239	Carrier Dynamics and Saturation Effect in (113)B InAs/InP Quantum Dot Lasers. Optical and Quantum Electronics, 2006, 38, 369-379.	1.5	17
240	Modelling of the two-state lasing and the turn-on delay in 1.55â€Âμm InAs/InP (113)B quantum dot lasers. IEE Proceedings: Optoelectronics, 2006, 153, 308-311.	0.8	5
241	Comparison between strip and rib SOI microwaveguides for intra-chip light distribution. Optical Materials, 2005, 27, 756-762.	1.7	12
242	Size Influence on the Propagation Loss Induced by Sidewall Roughness in Ultrasmall SOI Waveguides. IEEE Photonics Technology Letters, 2004, 16, 1661-1663.	1.3	134
243	Feedback Sensitivity and Coherence Collapse Threshold of Semiconductor DFB Lasers With Complex Structures. IEEE Journal of Quantum Electronics, 2004, 40, 231-240.	1.0	33
244	Coherence-collapse threshold of $1.3-\hat{l}\frac{1}{4}$ m semiconductor DFB lasers. IEEE Photonics Technology Letters, 2003, 15, 9-11.	1.3	23
245	2.5-Gb/s transmission characteristics of 1.3- \hat{l} /4m DFB lasers with external optical feedback. IEEE Photonics Technology Letters, 2002, 14, 101-103.	1.3	35
246	Analysis, fabrication, and characterization of $1.55-\hat{1}\frac{1}{4}$ m selection-free tapered stripe DFB lasers. IEEE Photonics Technology Letters, 2002, 14, 1040-1042.	1.3	12
247	Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film. Physical Review Letters, 2001, 86, 1110-1113.	2.9	310
248	New WDM DFB laser structure for facet phase-free uniform performances. , 0, , .		1
249	Optical transmission of a metal film with periodic subwavelength holes: a near-field view. , 0, , .		0
250	Selection-free WDM DFB lasers for STM16 applications. , 0, , .		1
251	Four-wave mixing in 1.3 \hat{l} 4m epitaxial quantum dot lasers directly grown on silicon. Photonics Research, 0, , .	3.4	7