Frederic Grillot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1550299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film. Physical Review Letters, 2001, 86, 1110-1113.	2.9	310
2	Size Influence on the Propagation Loss Induced by Sidewall Roughness in Ultrasmall SOI Waveguides. IEEE Photonics Technology Letters, 2004, 16, 1661-1663.	1.3	134
3	Gain Compression and Above-Threshold Linewidth Enhancement Factor in 1.3-\$muhbox{m}\$ InAs–GaAs Quantum-Dot Lasers. IEEE Journal of Quantum Electronics, 2008, 44, 946-951.	1.0	92
4	Light injection in SOI microwaveguides using high-efficiency grating couplers. Journal of Lightwave Technology, 2006, 24, 3810-3815.	2.7	91
5	1.3- <inline-formula> <tex-math notation="LaTeX">\$mu\$ </tex-math> </inline-formula> m Reflection Insensitive InAs/GaAs Quantum Dot Lasers Directly Grown on Silicon. IEEE Photonics Technology Letters, 2019, 31, 345-348.	1.3	83
6	Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides. Journal of Lightwave Technology, 2006, 24, 891-896.	2.7	79
7	Perspectives on Advances in Quantum Dot Lasers and Integration with Si Photonic Integrated Circuits. ACS Photonics, 2021, 8, 2555-2566.	3.2	67
8	Chaotic light at mid-infrared wavelength. Light: Science and Applications, 2016, 5, e16088-e16088.	7.7	65
9	Spectral Analysis of 1.55-\$mu\$m InAs–InP(113)B Quantum-Dot Lasers Based on a Multipopulation Rate Equations Model. IEEE Journal of Quantum Electronics, 2009, 45, 872-878.	1.0	63
10	Measuring the Chirp and the Linewidth Enhancement Factor of Optoelectronic Devices with a Mach–Zehnder Interferometer. IEEE Photonics Journal, 2011, 3, 476-488.	1.0	63
11	Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor. Applied Physics Letters, 2018, 112, .	1.5	63
12	Analysis of the Double Laser Emission Occurring in 1.55-\$mu{hbox {m}}\$ InAs–InP (113)B Quantum-Dot Lasers. IEEE Journal of Quantum Electronics, 2007, 43, 810-816.	1.0	62
13	Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 563-571.	1.9	60
14	rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback. Applied Physics Letters, 2010, 96, .	1.5	60
15	Microwave Characterization and Stabilization of Timing Jitter in a Quantum-Dot Passively Mode-Locked Laser via External Optical Feedback. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1311-1317.	1.9	58
16	Impacts of Wetting Layer and Excited State on the Modulation Response of Quantum-Dot Lasers. IEEE Journal of Quantum Electronics, 2012, 48, 1144-1150.	1.0	58
17	Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2780.	0.9	56
18	Private communication with quantum cascade laser photonic chaos. Nature Communications, 2021, 12, 3327.	5.8	55

#	Article	IF	CITATIONS
19	Two-color multi-section quantum dot distributed feedback laser. Optics Express, 2010, 18, 27028.	1.7	52
20	Free-Space Communication With Directly Modulated Mid-Infrared Quantum Cascade Devices. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-9.	1.9	46
21	Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation. Optics Letters, 2016, 41, 1153.	1.7	45
22	Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers. Applied Physics Letters, 2018, 112, .	1.5	44
23	Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser. Applied Physics Letters, 2009, 94, 153503.	1.5	39
24	Rate equation analysis of injection-locked quantum cascade lasers. Journal of Applied Physics, 2013, 113, 063104.	1.1	38
25	Enhanced Dynamic Performance of Quantum Dot Semiconductor Lasers Operating on the Excited State. IEEE Journal of Quantum Electronics, 2014, 50, 1-9.	1.0	38
26	Measurements of the linewidth enhancement factor of mid-infrared quantum cascade lasers by different optical feedback techniques. AIP Advances, 2016, 6, .	0.6	38
27	Physics and applications of quantum dot lasers for silicon photonics. Nanophotonics, 2020, 9, 1271-1286.	2.9	38
28	Variation of the feedback sensitivity in a 1.55â€,μm InAs/InP quantum-dash Fabry–Perot semiconductor laser. Applied Physics Letters, 2008, 93, 191108.	1.5	37
29	2.5-Gb/s transmission characteristics of 1.3-μm DFB lasers with external optical feedback. IEEE Photonics Technology Letters, 2002, 14, 101-103.	1.3	35
30	Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 \$mu\$m. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 764-773.	1.9	35
31	10 Gbit s ^{â~'1} Free Space Data Transmission at 9µm Wavelength With Unipolar Quantum Optoelectronics. Laser and Photonics Reviews, 2022, 16, .	4.4	35
32	Dynamic properties of InAsâ^•InP (311)B quantum dot Fabry–Perot lasers emitting at 1.52μm. Applied Physics Letters, 2008, 93, .	1.5	34
33	Feedback Sensitivity and Coherence Collapse Threshold of Semiconductor DFB Lasers With Complex Structures. IEEE Journal of Quantum Electronics, 2004, 40, 231-240.	1.0	33
34	Modulation Properties of Self-Injected Quantum-Dot Semiconductor Diode Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1900812-1900812.	1.9	33
35	Regimes of external optical feedback in 5.6 <i>μ</i> m distributed feedback mid-infrared quantum cascade lasers. Applied Physics Letters, 2014, 105, .	1.5	33
36	Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback. APL Photonics, 2020, 5, .	3.0	32

#	Article	IF	CITATIONS
37	GaAs-Based Quantum Dot Lasers. Semiconductors and Semimetals, 2012, 86, 371-417.	0.4	31
38	On the Effects of an Antireflection Coating Impairment on the Sensitivity to Optical Feedback of AR/HR Semiconductor DFB Lasers. IEEE Journal of Quantum Electronics, 2009, 45, 720-729.	1.0	27
39	Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking. Scientific Reports, 2016, 6, 27825.	1.6	27
40	Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration. Photonics Research, 2019, 7, 1222.	3.4	27
41	Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser. Optics Express, 2010, 18, 21932.	1.7	26
42	Modulation properties of optically injection-locked quantum cascade lasers. Optics Letters, 2013, 38, 1975.	1.7	26
43	Contribution of off-resonant states to the phase noise of quantum dot lasers. Optics Express, 2016, 24, 29872.	1.7	26
44	Carrier-Noise-Enhanced Relative Intensity Noise of Quantum Dot Lasers. IEEE Journal of Quantum Electronics, 2018, 54, 1-7.	1.0	26
45	Demonstration of a Low Threshold Current in 1.54 µm InAs/InP(311)B Quantum Dot Laser with Reduced Quantum Dot Stacks. Japanese Journal of Applied Physics, 2007, 46, 6903-6905.	0.8	25
46	Uncovering recent progress in nanostructured light-emitters for information and communication technologies. Light: Science and Applications, 2021, 10, 156.	7.7	25
47	Coherence-collapse threshold of 1.3-μm semiconductor DFB lasers. IEEE Photonics Technology Letters, 2003, 15, 9-11.	1.3	23
48	Tolerance to Optical Feedback of 10-Gb/s Quantum-Dash-Based Lasers Emitting at 1.51 \$mu\$m. IEEE Photonics Technology Letters, 2007, 19, 1181-1183.	1.3	23
49	Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: transition from short- to long-delay regimes. Optics Express, 2018, 26, 1743.	1.7	23
50	Study of the characteristics of 1.55μm quantum dash/dot semiconductor lasers on InP substrate. Applied Physics Letters, 2008, 93, 161104.	1.5	22
51	Rate equation modeling of the frequency noise and the intrinsic spectral linewidth in quantum cascade lasers. Optics Express, 2018, 26, 2325.	1.7	22
52	Mid-infrared hyperchaos of interband cascade lasers. Light: Science and Applications, 2022, 11, 7.	7.7	22
53	A dual-mode quantum dot laser operating in the excited state. Applied Physics Letters, 2011, 99, 231110.	1.5	21
54	Effect of p-doping on the intensity noise of epitaxial quantum dot lasers on silicon. Optics Letters, 2020, 45, 4887.	1.7	21

#	Article	IF	CITATIONS
55	Temperature and pressure dependence of the recombination processes in 1.5μ m InAsâ^•InP (311)B quantum dot lasers. Applied Physics Letters, 2007, 91, 131113.	1.5	20
56	Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique. Applied Physics Letters, 2009, 94, 081107.	1.5	19
57	Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states. AIP Advances, 2016, 6, 125114.	0.6	19
58	Frequency noise suppression of optical injection-locked quantum cascade lasers. Optics Express, 2018, 26, 15167.	1.7	19
59	Strong optical injection and the differential gain in a quantum dash laser. Optics Express, 2014, 22, 7222.	1.7	18
60	Phase-amplitude coupling characteristics in directly modulated quantum dot lasers. Applied Physics Letters, 2014, 105, 221114.	1.5	18
61	Non-degenerate four-wave mixing in an optically injection-locked InAs/InP quantum dot Fabry–Perot laser. Applied Physics Letters, 2015, 106, .	1.5	18
62	Passive Chaos Bandwidth Enhancement Under Dual-Optical Feedback with Hybrid III–V/Si DFB Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-9.	1.9	18
63	Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states. Optics Letters, 2018, 43, 210.	1.7	18
64	Investigation of Chaotic and Spiking Dynamics in Mid-Infrared Quantum Cascade Lasers Operating Continuous-Waves and Under Current Modulation. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-11.	1.9	18
65	Frequency comb dynamics of a 13  μm hybrid-silicon quantum dot semiconductor laser with optical injection. Optics Letters, 2019, 44, 5755.	1.7	18
66	Carrier Dynamics and Saturation Effect in (113)B InAs/InP Quantum Dot Lasers. Optical and Quantum Electronics, 2006, 38, 369-379.	1.5	17
67	Optical Noise of Dual-State Lasing Quantum Dot Lasers. IEEE Journal of Quantum Electronics, 2020, 56, 1-7.	1.0	17
68	Extreme events in quantum cascade lasers. Advanced Photonics, 2020, 2, .	6.2	17
69	Low-frequency fluctuations of a mid-infrared quantum cascade laser operating at cryogenic temperatures. Laser Physics Letters, 2018, 15, 116201.	0.6	16
70	Control of dynamical instability in semiconductor quantum nanostructures diode lasers: Role of phase-amplitude coupling. European Physical Journal: Special Topics, 2013, 222, 813-820.	1.2	15
71	Linewidth enhancement factor in semiconductor lasers subject to various external optical feedback conditions. Optics Express, 2014, 22, 5651.	1.7	15
72	Dynamic and nonlinear properties of epitaxial quantum-dot lasers on silicon operating under long- and short-cavity feedback conditions for photonic integrated circuits. Physical Review A, 2021, 103, .	1.0	15

#	Article	IF	CITATIONS
73	Influence of waveguide geometry on scattering loss effects in submicron strip silicon-on-insulator waveguides. IET Optoelectronics, 2008, 2, 1-5.	1.8	14
74	Dynamics of Hybrid III-V Silicon Semiconductor Lasers for Integrated Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 43-49.	1.9	14
75	Chaotic optical power dropouts driven by low frequency bias forcing in a mid-infrared quantum cascade laser. Scientific Reports, 2019, 9, 4451.	1.6	14
76	Beam shaping in high-power broad-area quantum cascade lasers using optical feedback. Scientific Reports, 2017, 7, 44284.	1.6	13
77	Analysis, fabrication, and characterization of 1.55-μm selection-free tapered stripe DFB lasers. IEEE Photonics Technology Letters, 2002, 14, 1040-1042.	1.3	12
78	Comparison between strip and rib SOI microwaveguides for intra-chip light distribution. Optical Materials, 2005, 27, 756-762.	1.7	12
79	A direct comparison of single-walled carbon nanotubes and quantum-wells based subpicosecond saturable absorbers for all optical signal regeneration at 1.55â€,μm. Applied Physics Letters, 2010, 96, .	1.5	12
80	Linewidth Rebroadening in Quantum Dot Semiconductor Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-10.	1.9	11
81	Influence of the polarization anisotropy on the linewidth enhancement factor and reflection sensitivity of 1.55- <i>μ</i> m InP-based InAs quantum dash lasers. Applied Physics Letters, 2019, 115, .	1.5	11
82	Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch. Photonics Research, 2021, 9, 1550.	3.4	11
83	1.3-µm passively mode-locked quantum dot lasers epitaxially grown on silicon: gain properties and optical feedback stabilization. JPhys Photonics, 2020, 2, 045006.	2.2	11
84	First demonstration of a 1.52 µm RT InAs/InP(3 1 1)B laser with an active zone based on a single QD lay Semiconductor Science and Technology, 2007, 22, 827-830.	er:0	10
85	Self-injected semiconductor distributed feedback lasers for frequency chirp stabilization. Optics Express, 2012, 20, 26062.	1.7	10
86	Pulse Characterization of Passively Mode-Locked Quantum-Dot Lasers Using a Delay Differential Equation Model Seeded With Measured Parameters. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1100311-1100311.	1.9	10
87	Highly efficient non-degenerate four-wave mixing under dual-mode injection in InP/InAs quantum-dash and quantum-dot lasers at 1.55 <i>î¼</i> m. Applied Physics Letters, 2015, 107, .	1.5	10
88	Relative intensity noise and intrinsic properties of RF mounted interband cascade laser. Applied Physics Letters, 2021, 119, .	1.5	10
89	Lasing spectra of 1.55Âμm InAs/InP quantum dot lasers: theoretical analysis and comparison with the experiments. Optical and Quantum Electronics, 2008, 40, 227-237.	1.5	9
90	Nondegenerate Four-Wave Mixing in a Dual-Mode Injection-Locked InAs/InP(100) Nanostructure Laser. IEEE Photonics Journal, 2014, 6, 1-8.	1.0	9

#	Article	IF	CITATIONS
91	Periodic and aperiodic pulse generation using optically injected DFB laser. Electronics Letters, 2015, 51, 280-282.	0.5	9
92	Spectral linewidth reduction of quantum cascade lasers by strong optical feedback. Journal of Applied Physics, 2020, 127, .	1.1	9
93	Linewidth Enhancement Factor of Semiconductor Lasers: Results from Round-Robin Measurements in COST 288. , 2007, , .		8
94	Frequency-dependent linewidth enhancement factor of optical injection-locked quantum dot/dash lasers. Optics Express, 2015, 23, 21761.	1.7	7
95	Four-wave mixing in 1.3 μm epitaxial quantum dot lasers directly grown on silicon. Photonics Research, 0, , .	3.4	7
96	Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2217-2221.	0.8	6
97	High coherence collapse of a hybrid III–V/Si semiconductor laser with a large quality factor. JPhys Photonics, 2020, 2, 025005.	2.2	6
98	Effect of Shockley-Read-Hall recombination on the static and dynamical characteristics of epitaxial quantum-dot lasers on silicon. Physical Review A, 2021, 103, .	1.0	6
99	Extensive study of the linewidth enhancement factor of a distributed feedback quantum cascade laser at ultra-low temperature. , 2019, , .		6
100	Spectral dispersion of the linewidth enhancement factor and four wave mixing conversion efficiency of an InAs/GaAs multimode quantum dot laser. Applied Physics Letters, 2022, 120, .	1.5	6
101	Multimode Physics in the Mode Locking of Semiconductor Quantum Dot Lasers. Applied Sciences (Switzerland), 2022, 12, 3504.	1.3	6
102	Modelling of the two-state lasing and the turn-on delay in 1.55â€Âµm InAs/InP (113)B quantum dot lasers. IEE Proceedings: Optoelectronics, 2006, 153, 308-311.	0.8	5
103	Low-threshold current density InAs quantum dash lasers on InP (100) grown by molecular beam epitaxy. Electronics Letters, 2009, 45, 50.	0.5	5
104	RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback. IET Optoelectronics, 2011, 5, 105-109.	1.8	5
105	Efficiency of four-wave mixing in injection-locked InAs/GaAs quantum-dot lasers. AIP Advances, 2016, 6, 125105.	0.6	5
106	Towards private optical communications with mid-infrared chaotic light. , 2020, , .		5
107	Modeling of Amplitude Squeezing in a Pump-Noise-Suppressed Interband Cascade Laser. IEEE Photonics Journal, 2022, 14, 1-8.	1.0	5
108	Tuning of the critical feedback level in 1.55-î¼m quantum dash semiconductor laser diodes. IET Optoelectronics, 2009, 3, 242-247.	1.8	4

#	Article	IF	CITATIONS
109	Study of short and mid-wavelength infrared telecom links performance for different climatic conditions. , 2019, , .		4
110	From Basic Physical Properties of InAs/InP Quantum Dots to State-of-the-Art Lasers for 1.55 µm Optical Communications. Advances in Materials Science and Engineering, 2016, , 95-125.	0.4	4
111	Demonstration of 1.51µm InAs/InP(311)B quantum dot single-mode laser operating under continuous wave. IET Optoelectronics, 2007, 1, 255-258.	1.8	3
112	10-GHz 1.59-μm quantum dash passively mode-locked two-section lasers. Proceedings of SPIE, 2010, , .	0.8	3
113	Influence of the linewidth enhancement factor on the modulation response of a nanostructure-based semiconductor laser operating under external optical feedback. , 2011, , .		3
114	Nonlinear dynamics and modulation properties of optically injected quantum cascade lasers. , 2013, , .		3
115	Tuning the external optical feedback-sensitivity of a passively mode-locked quantum dot laser. Applied Physics Letters, 2014, 105, 041112.	1.5	3
116	Nonlinear dynamics of quantum cascade lasers with optical feedback. Proceedings of SPIE, 2015, , .	0.8	3
117	Dynamic and Noise Properties of High-Q Hybrid Laser. , 2018, , .		3
118	Experimental investigation of broad area quantum cascade lasers under external feedback. Optics Express, 2018, 26, 17927.	1.7	3
119	Intensity Noise and Pulse Oscillations of an InAs/GaAs Quantum Dot Laser on Germanium. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-10.	1.9	3
120	Modeling of a quantum dot gain chip in an external cavity laser configuration. Laser Physics, 2021, 31, 085002.	0.6	3
121	Quantum dot lasers based photonics integrated circuits. , 2020, , .		3
122	Relative intensity noise properties of quantum dot lasers. , 2018, , .		3
123	Epitaxial integration of high-performance quantum-dot lasers on silicon. , 2020, , .		3
124	A review of recent results of mid-infrared quantum cascade photonic devices operating under external optical control. JPhys Photonics, 2022, 4, 022001.	2.2	3
125	Tolerance to Optical Feedback of 10 GBPs Quantum-Dash Based Lasers Emitting at 1.55 μm. , 2007, , .		2
126	Theoretical analysis of 1.55-μm InAs/InP (113B) quantum dot lasers based on a multi-population rate equation model. Proceedings of SPIE, 2009, , .	0.8	2

#	Article	IF	CITATIONS
127	Manipulation of the linewidth enhancement factor in an injection-locked Quantum-Dash Fabry-Perot laser at 1550nm. , 2010, , .		2
128	Enhanced Properties in Single-Walled Carbon Nanotubes Based Saturable Absorber for All Optical Signal Regeneration. Japanese Journal of Applied Physics, 2011, 50, 040206.	0.8	2
129	Delay differential equation-based modeling of passively mode-locked quantum dot lasers using measured gain and loss spectra. Proceedings of SPIE, 2012, , .	0.8	2
130	Modelling the gain compression effects on semiconductor quantum-dot laser through a new modulation transfer function. , 2012, , .		2
131	Photonics based on carbon nanotubes. Nanoscale Research Letters, 2013, 8, 300.	3.1	2
132	Intensity modulation response of injection-locked quantum cascade lasers. , 2013, , .		2
133	Impacts of carrier capture and relaxation rates on the modulation response of injection-locked quantum dot lasers. , 2013, , .		2
134	Differential gain enhancement in a quantum dash laser using strong optical injection. Proceedings of SPIE, 2013, , .	0.8	2
135	Estimating optical feedback from a chalcogenide fiber in mid-infrared quantum cascade lasers. AIP Advances, 2016, 6, 105201.	0.6	2
136	Linewidth broadening factor and gain compression in quantum cascade lasers. Proceedings of SPIE, 2016, , .	0.8	2
137	Beam steering in quantum cascade lasers with optical feedback. , 2017, , .		2
138	Effects of gain nonlinearities in an optically injected gain lever semiconductor laser. Photonics Research, 2017, 5, 315.	3.4	2
139	Temperature dependent linewidth rebroadening in quantum dot semiconductor lasers. Journal Physics D: Applied Physics, 2020, 53, 235106.	1.3	2
140	Stimulating polarization switching dynamics in mid-infrared quantum cascade lasers. Journal of the Optical Society of America B: Optical Physics, 2021, 38, B35.	0.9	2
141	Talbot coupling of an array of quantum cascade lasers. , 2018, , .		2
142	P-doping effect on external optical feedback dynamics in 1.3-microns InAs/GaAs quantum dot laser epitaxially grown on silicon. , 2020, , .		2
143	Competition between Entrainment Phenomenon and Chaos in a Quantum-Cascade Laser under Strong Optical Reinjection. Photonics, 2022, 9, 29.	0.9	2
144	Mid-infrared free-space cryptosystem. Nonlinear Theory and Its Applications IEICE, 2022, 13, 44-52.	0.4	2

#	Article	IF	CITATIONS
145	New WDM DFB laser structure for facet phase-free uniform performances. , 0, , .		1
146	Selection-free WDM DFB lasers for STM16 applications. , 0, , .		1
147	1516â€nm room temperature CW operation of quantum dot InAs/InP(311)B singlemode laser. Electronics Letters, 2007, 43, 571.	0.5	1
148	Systematic investigation of the alpha parameter influence on the critical feedback level in QD lasers. Proceedings of SPIE, 2009, , .	0.8	1
149	QD laser on InP substrate for 1.55 μm emission and beyond. Proceedings of SPIE, 2010, , .	0.8	1
150	Characterization of timing jitter in a quantum dot passively mode-locked laser at low offset frequency. , 2010, , .		1
151	PERFORMANCE OF A QUANTUM DOT PASSIVELY MODE-LOCKED LASER UNDER OPTICAL FEEDBACK AND TEMPERATURE CONTROL. International Journal of High Speed Electronics and Systems, 2011, 20, 679-685.	0.3	1
152	Frequency chirp stabilization in semiconductor distributed feedback lasers with external control. , 2012, , .		1
153	Carrier escape from ground state and non-zero resonance frequency at low bias powers for semiconductor quantum-dot lasers. , 2012, , .		1
154	20 GHz to 83 GHz single section InAs/InP quantum dot mode-locked lasers grown on (001) misoriented substrate. , 2012, , .		1
155	Systematic investigation of the temperature behavior of InAs/InP quantum nanostructure passively mode-locked lasers. Proceedings of SPIE, 2013, , .	0.8	1
156	Bandwidth and dynamic range of a pulsed local oscillator coherent optical receiver: application to the linear optical sampling. Proceedings of SPIE, 2013, , .	0.8	1
157	Modeling and characterization of pulse shape and pulse train dynamics in two-section passively mode-locked quantum dot lasers. Proceedings of SPIE, 2013, , .	0.8	1
158	Introduction to the issue on Physics and Applications of Laser Dynamics (IS-PALD 2013). Optics Express, 2014, 22, 7362.	1.7	1
159	Impact of the gain model on the stability assessment in semiconductor DFB lasers. , 2014, , .		1
160	Rate equation analysis of frequency chirp in optically injection-locked quantum cascade lasers. , 2014, , , .		1
161	Analysis of frequency chirp of selfâ€injected nanostructure semiconductor lasers. IET Optoelectronics, 2014, 8, 51-57.	1.8	1
162	Corrections to "Enhanced Dynamic Performance of Quantum Dot Semiconductor Lasers Operating on the Excited State―[Sep 14 723-731]. IEEE Journal of Quantum Electronics, 2014, 50, 1072-1072.	1.0	1

#	Article	IF	CITATIONS
163	Near-threshold relaxation dynamics of a quantum dot laser. Proceedings of SPIE, 2014, , .	0.8	1
164	Time Resolved Chirp Measurement Based on a Polarization-Maintaining Fiber. IEEE Photonics Technology Letters, 2015, 27, 1557-1560.	1.3	1
165	Corrections to "Enhancement of the Modulation Dynamics of an Optically Injection-Locked Semiconductor Laser Using Gain Lever― IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 792-792.	1.9	1
166	Dispersion uncompensated IM/DD transmissions of 12GHz-wide multi-band OFDM over 100km with a D-EML. , 2015, , .		1
167	Enhancement of the Modulation Dynamics of an Optically Injection-Locked Semiconductor Laser Using Gain Lever. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 575-582.	1.9	1
168	Influence of inhomogeneous broadening on the dynamics of quantum dot lasers. , 2015, , .		1
169	Deterministic temporal chaos from a mid-infrared external cavity quantum cascade lasers. , 2016, , .		1
170	Gain compression effect on the modulation dynamics of an optically injection-locked semiconductor laser using gain lever. , 2016, , .		1
171	Wideband chaos in hybrid III-V/silicon distributed feedback semiconductor lasers under optical feedback. , 2017, , .		1
172	Low Linewidth Enhancement Factor and High Optical Feedback Resistance of p-Doped Silicon Based Quantum Dot Lasers. , 2018, , .		1
173	Design, Fabrication and Characterization of Hybrid III-V/SOI Phase-Shift Free DFB Laser with Tapered Silicon Waveguide. , 2018, , .		1
174	10 Gbps Error-Free Transmission of a High Coherent Si/III-V Hybrid Distributed Feedback Laser under Strong Optical Feedback. , 2019, , .		1
175	Dynamic properties of two-state lasing quantum dot laser for external optical feedback resistant applications. , 2020, , .		1
176	Complex delay dynamics of high power quantum cascade oscillators. , 2017, , .		1
177	Thermally insensitive determination of the chirp parameter of InAs/GaAs quantum dot lasers epitaxially grown onto silicon. , 2019, , .		1
178	Enhanced Properties in Single-Walled Carbon Nanotubes Based Saturable Absorber for All Optical Signal Regeneration. Japanese Journal of Applied Physics, 2011, 50, 040206.	0.8	1
179	Analysis of carriers dynamics and laser emission in 1.55-μm InAs/InP(113)B quantum dot lasers. Proceedings of SPIE, 2010, , .	0.8	1
180	Dynamics of Excited-State InAs/GaAs Fabry-Perot Quantum-Dot Lasers under Optical Feedback. , 2016, , .		1

180 Dynamics of Excited-State InAs/GaAs Fabry-Perot Quantum-Dot Lasers under Optical Feedback. , 2016, , .

#	Article	IF	CITATIONS
181	Square Wave Emission in a Mid-infrared Quantum Cascade Oscillator Under Rotated Polarization. , 2019, , .		1
182	10 Gbit s ^{â^'1} Free Space Data Transmission at 9µm Wavelength With Unipolar Quantum Optoelectronics (Laser Photonics Rev. 16(2)/2022). Laser and Photonics Reviews, 2022, 16, .	4.4	1
183	High-definition video broadcasting with a room-temperature quantum cascade laser emitting in the long-wave infrared domain. , 2022, , .		1
184	Reflection sensitivity of InAs/GaAs epitaxial quantum dot lasers under direct modulation. Electronics Letters, 2022, 58, 363-365.	0.5	1
185	Analysis of the Spontaneous Emission Limited Linewidth of an Integrated Ill–V/SiN Laser (Laser) Tj ETQq1 1 0.7	'843]4 rgB ⁻ 4.4	T 10verlock
186	Optical transmission of a metal film with periodic subwavelength holes: a near-field view. , 0, , .		0
187	Facet phase effects on the coherence collapse threshold of 1.55 μm AR/HR distributed feedback semiconductor lasers. , 2006, , .		Ο
188	Dynamic properties of InAs/InP (311)B quantum dot lasers emitting at 1.52 μm. , 2008, , .		0
189	Variation of the critical feedback level in a 1550nm quantum-dash Fabry-Perot semiconductor laser. , 2008, , .		Ο
190	Influence of the Linewidth Enhancement Factor on the Critical Feedback Level in a Quantum Dash Laser. , 2009, , .		0
191	Effects of Optical Feedback in InAs/GaAs Monolithic Quantum Dot Passively Mode-Locked Lasers. , 2009, , .		Ο
192	Temperature effects on the modulation response of an injection-locked InAs/InP Quantum-Dash laser. , 2009, , .		0
193	Modulation response of an injection locked quantum-dash Fabry Perot laser at 1550nm. Proceedings of SPIE, 2009, , .	0.8	Ο
194	Ultra-low RF Linewidth in a Quantum Dot Mode-Locked Laser Under External Optical Feedback Stabilization. , 2010, , .		0
195	Measuring the linewidth enhancement factor of optoelectronics devices based on a Mach-Zehnder interferometer. , 2010, , .		Ο
196	Two-color quantum-dot DFB laser for terahertz applications. , 2010, , .		0
197	Dual-mode quantum dot laser operating in the excited state. , 2011, , .		0
198	Direct characterization of carrier relaxation in a passively mode-locked quantum dot laser. , 2011, , .		0

12

#	Article	IF	CITATIONS
199	Simultaneous low linewidth enhancement factor and high bandwidth quantum-dash injection-locked laser. , 2011, , .		Ο
200	Influence of facet phases on adiabatic chirp behavior of index-coupled distributed-feedback lasers. , 2012, , .		0
201	Amplitude Modulation and Frequency Chirp of an Injection-Locked Quantum Dash Semiconductor Laser. , 2014, , .		Ο
202	Nondegenerate four-wave mixing in a dual mode injection locked quantum dot laser. Proceedings of SPIE, 2014, , .	0.8	0
203	Impact of Absorber Bias Voltage on the Optical Feedback Sensitivity of a Passively Mode-Locked Quantum Dot Laser Operating at Elevated Temperature. , 2014, , .		Ο
204	Phase-amplitude coupling of optically-injected nanostructured semiconductor lasers. , 2014, , .		0
205	Self-referenced technique for monitoring and analysing the non-linear dynamics of semiconductor lasers. Optics Express, 2014, 22, 16528.	1.7	Ο
206	Predicting modes of operation in quantum dot mode-locked lasers using a delay differential equation model. , 2014, , .		0
207	Experimental investigation of the above-threshold linewidth broadening factor of a mid-infrared quantum cascade laser. , 2015, , .		Ο
208	Nonlinear conversion efficiency of InAs/InP nanostructured Fabry-Perot lasers. Proceedings of SPIE, 2015, , .	0.8	0
209	Non-linear and dynamic properties of MOVPE-grown InAs/InP quantum-dot and quantum-dash Fabry-Perot lasers. , 2015, , .		0
210	Highly efficient wavelength conversion in InAs/GaAs quantum dot lasers. , 2015, , .		0
211	Optical feedback sensitivity of hybrid III–V silicon lasers. , 2015, , .		Ο
212	Analysis of dual-mode lasing characteristics in a 1310-nm optically injected quantum dot distributed feedback laser. , 2015, , .		0
213	Modulation-Frequency Dependence of the Phase-Amplitude Coupling in Quantum Dot Lasers. , 2015, , .		Ο
214	Low Phase Noise Quantum Dot Lasers for Coherent Communication Networks. , 2016, , .		0
215	InAs/GaAs excited state quantum-dot transmitters operating under long-delayed optical feedback. , 2016, , .		0
216	Optical nonlinearities in InAs/GaAs injection-locked quantum dot light-based emitters. Proceedings of SPIE, 2016, , .	0.8	0

#	Article	IF	CITATIONS
217	Dynamics of optically-injected semiconductor nanolasers. Proceedings of SPIE, 2016, , .	0.8	Ο
218	Long delay optical feedback sensitivity of hybrid III-V/SOI directly modulated DFB lasers. , 2017, , .		0
219	Controllable rare events in optically-injected semiconductor lasers. , 2017, , .		Ο
220	Utilizing the Complex Dynamics of InAs/GaAs Quantum Dot lasers for Ultrafast Devices. , 2018, , .		0
221	Introduction to the Issue on Physics and Applications of Laser Dynamics (IS-PALD 2017). Optics Express, 2018, 26, 21375.	1.7	0
222	Enhanced Chaotic Performance with Optically Injected Quantum Cascade Lasers. , 2019, , .		0
223	Dynamics of epitaxial quantum dot laser on silicon subject to chip-scale back-reflection for isolator-free photonics integrated circuits. , 2021, , .		0
224	Chaos synchronization in mid-infrared quantum cascade lasers for private free-space communication. , 2021, , .		0
225	Recent progress in quantum dot distributed feedback lasers with large wavelength detuning for uncooled and isolation-free applications. , 2021, , .		0
226	Methods for Improved 3dB bandwidth in an Injection-Locked QDash Fabry Perot Laser @ 1550nm. , 2009, , .		0
227	High Performance Excited-State Nanostructure Lasers—Modulation Response, Frequency Chirp and Linewidth Enhancement Factor. , 2014, , .		0
228	A Novel Method for Extracting the Linewidth Broadening Factor of Semiconductor Lasers. , 2015, , .		0
229	10-Gb/s Floor-Free Transmission of a Hybrid III-V on Silicon Distributed Feedback Laser with Optical Feedback. , 2018, , .		0
230	Influence of the upper nonlasing state on the route to chaos of InAs/GaAs quantum dot lasers. , 2018, ,		0
231	The Effect of Temperature on the Dynamical States of a Time Delayed Mid-infrared Quantum Cascade Oscillator. , 2018, , .		0
232	Temperature dependence of a mid-infrared quantum cascade laser with external optical feedback. , 2018, , .		0
233	Ultrafast and nonlinear dynamics of InAs/GaAs semiconductor quantum dot lasers. , 2018, , .		0
234	Temperature dependence of spectral linewidth of InAs/InP quantum dot distributed feedback lasers. , 2018, , .		0

#	Article	IF	CITATIONS
235	Large-signal capabilities of an optically injection-locked semiconductor laser using gain lever. , 2018, ,		0
236	Recent advances in InAs/GaAs quantum dot lasers with short optical feedback. , 2018, , .		0
237	High frequency dynamics in quantum cascade lasers : a roadmap to free-space communications in the mid-infrared. , 2019, , .		0
238	Controlling the Likelihood of Extreme Pulses in a Quantum Cascade Laser with Optical Feedback and Bias Perturbation. , 2019, , .		0
239	Linewidth broadening factor and optical feedback sensitivity of silicon based quantum dot lasers. , 2019, , .		Ο
240	Systematic investigation of the influencing parameters of an external cavity laser with a quantum dot gain chip. , 2020, , .		0
241	All-optical modulation at mid-infrared wavelength with QCLs. , 2020, , .		Ο
242	Frequency-domain modeling of semiconductor mode lock lasers. , 2020, , .		0
243	An Indirect Determination of the Polarization Anisotropy in a Quantum Cascade Laser Under Strong Cross-Polarization Feedback. , 2020, , .		Ο
244	Tunable All-Optical Modulation and Building Blocks for Optical Neurons at Mid-Infrared Wavelength. , 2020, , .		0
245	Excitability in Mid-Infrared Quantum Cascade Lasers: from Communication Jamming to Neuromorphic Photonics. , 2020, , .		Ο
246	Uncovering reflection insensitive semiconductor lasers for silicon photonic integration. , 2020, , .		0
247	Frequency comb dynamics of a 13µm hybrid-silicon quantum dot semiconductor laser with optical injection: erratum. Optics Letters, 2020, 45, 856.	1.7	0
248	Peculiarities and predictions of rogue waves in mid-infrared quantum cascade lasers under conventional optical feedback. , 2020, , .		0
249	Effects of external optical feedback in InAs/InP quantum dot frequency comb lasers on silicon. , 2022, ,		0
250	Chaos-based mid-infrared communications. , 2022, , .		0
251	The above-threshold linewidth enhancement factor of silicon-based quantum dot lasers. , 2021, , .		0