
## Qingrong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1549888/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Introducing matrix sparsity with kernel truncation into dose calculations for fluence optimization.<br>Biomedical Physics and Engineering Express, 2022, 8, 017001.                                      | 1.2 | 1         |
| 2  | Radiation Therapy for Rectal Cancer: Executive Summary of an ASTRO Clinical Practice Guideline.<br>Practical Radiation Oncology, 2021, 11, 13-25.                                                        | 2.1 | 67        |
| 3  | Assessing the robustness of artificial intelligence powered planning tools in radiotherapy clinical settings—a phantom simulation approach. Quantitative Imaging in Medicine and Surgery, 2021, 11, 0-0. | 2.0 | 1         |
| 4  | Artificial intelligence applications in intensity modulated radiation treatment planning: an overview.<br>Quantitative Imaging in Medicine and Surgery, 2021, 11, 4859-4880.                             | 2.0 | 9         |
| 5  | A data-driven approach to optimal beam/arc angle selection for liver stereotactic body radiation therapy treatment planning. Quantitative Imaging in Medicine and Surgery, 2021, 11, 0-0.                | 2.0 | 0         |
| 6  | Clinical Experience With Machine Learning-Based Automated Treatment Planning for Whole Breast<br>Radiation Therapy. Advances in Radiation Oncology, 2021, 6, 100656.                                     | 1.2 | 1         |
| 7  | An Interpretable Planning Bot for Pancreas Stereotactic Body Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2021, 109, 1076-1085.                                       | 0.8 | 21        |
| 8  | An artificial intelligenceâ€driven agent for realâ€time headâ€andâ€neck IMRT plan generation using<br>conditional generative adversarial network (cGAN). Medical Physics, 2021, 48, 2714-2723.           | 3.0 | 19        |
| 9  | Deep Learning–Based Fluence Map Prediction for Pancreas Stereotactic Body Radiation Therapy With<br>Simultaneous Integrated Boost. Advances in Radiation Oncology, 2021, 6, 100672.                      | 1.2 | 16        |
| 10 | Insights of an AI agent via analysis of prediction errors: a case study of fluence map prediction for radiation therapy planning. Physics in Medicine and Biology, 2021, 66, 23NT01.                     | 3.0 | 1         |
| 11 | Transfer learning for fluence map prediction in adrenal stereotactic body radiation therapy. Physics<br>in Medicine and Biology, 2021, 66, .                                                             | 3.0 | 5         |
| 12 | Fluence Map Prediction Using Deep Learning Models – Direct Plan Generation for Pancreas<br>Stereotactic Body Radiation Therapy. Frontiers in Artificial Intelligence, 2020, 3, 68.                       | 3.4 | 29        |
| 13 | Knowledge Models as Teaching Aid for Training Intensity Modulated Radiation Therapy Planning: A<br>Lung Cancer Case Study. Frontiers in Artificial Intelligence, 2020, 3, 66.                            | 3.4 | 3         |
| 14 | Knowledge-Based Tradeoff Hyperplanes for Head and Neck Treatment Planning. International Journal of Radiation Oncology Biology Physics, 2020, 106, 1095-1103.                                            | 0.8 | 11        |
| 15 | Knowledge-Based Statistical Inference Method for Plan Quality Quantification. Technology in Cancer<br>Research and Treatment, 2019, 18, 153303381985775.                                                 | 1.9 | 10        |
| 16 | Goal-Driven Beam Setting Optimization for Whole-Breast Radiation Therapy. Technology in Cancer<br>Research and Treatment, 2019, 18, 153303381985866.                                                     | 1.9 | 7         |
| 17 | Three IMRT advanced planning tools: A multiâ€institutional sideâ€byâ€side comparison. Journal of Applied<br>Clinical Medical Physics, 2019, 20, 65-77.                                                   | 1.9 | 6         |
| 18 | Automatic Planning of Whole Breast Radiation Therapy Using Machine Learning Models. Frontiers in<br>Oncology, 2019, 9, 750.                                                                              | 2.8 | 22        |

QINGRONG WU

| #  | Article                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Collimator Setting Optimization Algorithm for Dual-Arc Volumetric Modulated Arc Therapy in<br>Pancreas Stereotactic Body Radiation Therapy. Technology in Cancer Research and Treatment, 2019, 18,<br>153303381987076.                                                           | 1.9 | 2         |
| 20 | Modeling of multiple planning target volumes for head and neck treatments in knowledgeâ€based<br>treatment planning. Medical Physics, 2019, 46, 3812-3822.                                                                                                                         | 3.0 | 15        |
| 21 | Knowledgeâ€based planning for intensityâ€modulated radiation therapy: A review of dataâ€driven<br>approaches. Medical Physics, 2019, 46, 2760-2775.                                                                                                                                | 3.0 | 140       |
| 22 | Dose Prediction for Prostate Radiation Treatment: Feasibility of a Distance-Based Deep Learning Model. , 2019, , .                                                                                                                                                                 |     | 4         |
| 23 | Incorporating Case-Based Reasoning for Radiation Therapy Knowledge Modeling: A Pelvic Case Study.<br>Technology in Cancer Research and Treatment, 2019, 18, 153303381987478.                                                                                                       | 1.9 | 2         |
| 24 | Improving Quality and Consistency in NRGÂOncology Radiation Therapy Oncology GroupÂ0631 for Spine<br>Radiosurgery via Knowledge-Based Planning. International Journal of Radiation Oncology Biology<br>Physics, 2018, 100, 1067-1074.                                              | 0.8 | 35        |
| 25 | Machine learning and modeling: Data, validation, communication challenges. Medical Physics, 2018, 45, e834-e840.                                                                                                                                                                   | 3.0 | 67        |
| 26 | Lung IMRT planning with automatic determination of beam angle configurations. Physics in Medicine and Biology, 2018, 63, 135024.                                                                                                                                                   | 3.0 | 10        |
| 27 | An Ensemble Approach to Knowledge-Based Intensity-Modulated Radiation Therapy Planning. Frontiers<br>in Oncology, 2018, 8, 57.                                                                                                                                                     | 2.8 | 30        |
| 28 | Exploring the Margin Recipe for Online Adaptive Radiation Therapy for Intermediate-Risk Prostate<br>Cancer: An Intrafractional Seminal Vesicles Motion Analysis. International Journal of Radiation<br>Oncology Biology Physics, 2017, 98, 473-480.                                | 0.8 | 26        |
| 29 | SU-F-T-341: Generate Clinical Acceptable Trade-Off Options in Brain IMRT Planning by Local Multi-Criteria Optimization (MCO) Method. Medical Physics, 2016, 43, 3541-3541.                                                                                                         | 3.0 | 0         |
| 30 | Atlas-guided prostate intensity modulated radiation therapy (IMRT) planning. Physics in Medicine and Biology, 2015, 60, 7277-7291.                                                                                                                                                 | 3.0 | 21        |
| 31 | Standardized beam bouquets for lung IMRT planning. Physics in Medicine and Biology, 2015, 60, 1831-1843.                                                                                                                                                                           | 3.0 | 20        |
| 32 | Incorporating singleâ€side sparing in models for predicting parotid dose sparing in head and neck IMRT.<br>Medical Physics, 2014, 41, 021728.                                                                                                                                      | 3.0 | 22        |
| 33 | Single Institution's Dosimetry and IGRT Analysis of Prostate SBRT. Radiation Oncology, 2013, 8, 215.                                                                                                                                                                               | 2.7 | 18        |
| 34 | A Knowledge-Based Approach to Improving and Homogenizing Intensity Modulated Radiation Therapy<br>Planning Quality Among Treatment Centers: An Example Application to Prostate Cancer Planning.<br>International Journal of Radiation Oncology Biology Physics, 2013, 87, 176-181. | 0.8 | 191       |
| 35 | SU-E-CAMPUS-T-05: Quality Evaluation of An Automatic VMAT Planning Method for Head and Neck Cancer Cases. Medical Physics, 2013, 40, 380-380.                                                                                                                                      | 3.0 | 0         |
| 36 | TH-C-137-08: Dosimetric Quality of An Automatic IMRT Planning Method for Head and Neck Cancer<br>Cases. Medical Physics, 2013, 40, 534-534.                                                                                                                                        | 3.0 | 0         |

QINGRONG WU

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | SU-E-T-707: Evaluation of the Quality of Organs-At-Risk Dose Sparing in Anorectal and Prostate IMRT<br>Plans. Medical Physics, 2013, 40, 369-369.                                                                                        | 3.0 | 0         |
| 38 | Quantitative analysis of the factors which affect the interpatient organâ€atâ€risk dose sparing variation<br>in IMRT plans. Medical Physics, 2012, 39, 6868-6878.                                                                        | 3.0 | 227       |
| 39 | MO-D-BRB-10: Modeling Inter-Patient Variation of Organ-At-Risk Sparing in IMRT Plans: An<br>Evidence-Based Plan Quality Evaluation. Medical Physics, 2012, 39, 3868-3868.                                                                | 3.0 | 0         |
| 40 | SU-E-T-626: Individualized Trade-Off of Dose Coverage and Sparing in IMRT Planning. Medical Physics, 2012, 39, 3850-3850.                                                                                                                | 3.0 | 0         |
| 41 | A planning quality evaluation tool for prostate adaptive IMRT based on machine learning. Medical Physics, 2011, 38, 719-726.                                                                                                             | 3.0 | 274       |
| 42 | Response to "Comment on â€~A planning quality evaluation tool for prostate adaptive IMRT based on<br>machine learning' ―[Med. Phys. 38, 719 (2011)]. Medical Physics, 2011, 38, 2821-2821.                                               | 3.0 | 8         |
| 43 | Digital Tomosynthesis for Respiratory Gated Liver Treatment: Clinical Feasibility for Daily Image<br>Guidance. International Journal of Radiation Oncology Biology Physics, 2011, 79, 289-296.                                           | 0.8 | 8         |
| 44 | Volumetric Arc Intensity–Modulated Therapy for Spine Body Radiotherapy: Comparison With Static<br>Intensity-Modulated Treatment. International Journal of Radiation Oncology Biology Physics, 2009, 75,<br>1596-1604.                    | 0.8 | 117       |
| 45 | Impact of collimator leaf width and treatment technique on stereotactic radiosurgery and radiotherapy plans for intra- and extracranial lesions. Radiation Oncology, 2009, 4, 3.                                                         | 2.7 | 67        |
| 46 | On-Board Patient Positioning for Head-and-Neck IMRT: Comparing Digital Tomosynthesis to Kilovoltage<br>Radiography and Cone-Beam Computed Tomography. International Journal of Radiation Oncology<br>Biology Physics, 2007, 69, 598-606. | 0.8 | 36        |