Eva Mazario

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1549778/publications.pdf Version: 2024-02-01

Ενα Μαζαριο

#	Article	IF	CITATIONS
1	Aggregation effects on the magnetic properties of iron oxide colloids. Nanotechnology, 2019, 30, 112001.	2.6	131
2	Magnetic Hyperthermia Properties of Electrosynthesized Cobalt Ferrite Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 11405-11411.	3.1	95
3	Corrosion behaviour of API 5LX52 steel in HCl and H2SO4 media in the presence of 1,3-dibencilimidazolio acetate and 1,3-dibencilimidazolio dodecanoate ionic liquids as inhibitors. Materials Chemistry and Physics, 2014, 147, 191-197.	4.0	81
4	Synthesis and characterization of CoFe ₂ O ₄ ferrite nanoparticles obtained by an electrochemical method. Nanotechnology, 2012, 23, 355708.	2.6	66
5	Synthesis and structural characterization of Zn _x Fe _{3â^'x} O ₄ ferrite nanoparticles obtained by an electrochemical method. RSC Advances, 2016, 6, 40067-40076.	3.6	62
6	High Specific Absorption Rate and Transverse Relaxivity Effects in Manganese Ferrite Nanoparticles Obtained by an Electrochemical Route. Journal of Physical Chemistry C, 2015, 119, 6828-6834.	3.1	53
7	How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios. Nanoscale, 2021, 13, 15631-15646.	5.6	53
8	Electrochemical synthesis of NiFe2O4 nanoparticles: Characterization and their catalytic applications. Journal of Alloys and Compounds, 2012, 536, S241-S244.	5.5	52
9	One-pot electrochemical synthesis of polydopamine coated magnetite nanoparticles. RSC Advances, 2014, 4, 48353-48361.	3.6	46
10	Superparamagnetic nanosorbent for water purification: Assessment of the adsorptive removal of lead and methyl orange from aqueous solutions. Science of the Total Environment, 2020, 711, 134644.	8.0	38
11	Synthesis and characterization of manganese ferrite nanoparticles obtained by electrochemical/chemical method. Materials and Design, 2016, 111, 646-650.	7.0	37
12	Highly efficient and selective extraction of uranium from aqueous solution using a magnetic device: succinyl-β-cyclodextrin-APTES@maghemite nanoparticles. Environmental Science: Nano, 2018, 5, 158-168.	4.3	37
13	Fenton-like degradation enhancement of methylene blue dye with magnetic heating induction. Journal of Electroanalytical Chemistry, 2020, 879, 114773.	3.8	37
14	Effect of the Surface Charge on the Adsorption Capacity of Chromium(VI) of Iron Oxide Magnetic Nanoparticles Prepared by Microwave-Assisted Synthesis. Water (Switzerland), 2019, 11, 2372.	2.7	34
15	Influence of the temperature in the electrochemical synthesis of cobalt ferrites nanoparticles. Journal of Alloys and Compounds, 2012, 536, S222-S225.	5.5	32
16	Comparison of ferrite nanoparticles obtained electrochemically for catalytical reduction of hydrogen peroxide. Journal of Solid State Electrochemistry, 2016, 20, 1191-1198.	2.5	30
17	Cation distribution of cobalt ferrite electrosynthesized nanoparticles. A methodological comparison. Journal of Alloys and Compounds, 2018, 739, 909-917.	5.5	26
18	Improvement in Heavy Metal Removal from Wastewater Using an External Magnetic Inductor. Nanomaterials, 2019, 9, 1508.	4.1	23

Eva Mazario

#	Article	IF	CITATIONS
	New insights into the structural analysis of maghemite and (MFe ₂ O ₄ , M = Co,) Tj ETQq2	1 1 0.7843	314 rgBT /C
19	Frontiers, 2020, 4, 3063-3073.	5.9	22
20	Maghemite nanoparticles coated with human serum albumin: combining targeting by the iron-acquisition pathway and potential in photothermal therapies. Journal of Materials Chemistry B, 2017, 5, 3154-3162.	5.8	18
21	Chemically synthesized Au–Fe ₃ O ₄ nanostructures with controlled optical and magnetic properties. Journal Physics D: Applied Physics, 2015, 48, 035502.	2.8	17
22	Engineering Iron Oxide Nanocatalysts by a Microwave-Assisted Polyol Method for the Magnetically Induced Degradation of Organic Pollutants. Nanomaterials, 2021, 11, 1052.	4.1	17
23	The Impact of Dihydrogen Phosphate Anions on the Excited-State Proton Transfer of Harmane. Effect of β-Cyclodextrin on These Photoreactions. Journal of Physical Chemistry A, 2012, 116, 207-214.	2.5	16
24	Elongated magnetic nanoparticles with high-aspect ratio: a nuclear relaxation and specific absorption rate investigation. Physical Chemistry Chemical Physics, 2019, 21, 18741-18752.	2.8	15
25	TRAIL acts synergistically with iron oxide nanocluster-mediated magneto- and photothermia. Theranostics, 2019, 9, 5924-5936.	10.0	14
26	Adsorption of chromium(VI) onto electrochemically obtained magnetite nanoparticles. International Journal of Environmental Science and Technology, 2015, 12, 4017-4024.	3.5	13
27	Functionalization of Iron Oxide Nanoparticles With HSA Protein for Thermal Therapy. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	12
28	Evidence of cathodic peroxydisulfate activation via electrochemical reduction at Fe(II) sites of magnetite-decorated porous carbon: Application to dye degradation in water. Journal of Electroanalytical Chemistry, 2021, 902, 115807.	3.8	12
29	Synthesis of bis(amidoxime)s and evaluation of their properties as uranyl-complexing agents. Tetrahedron, 2018, 74, 2641-2649.	1.9	11
30	Maghemite nanoparticles bearing di(amidoxime) groups for the extraction of uranium from wastewaters. AIP Advances, 2017, 7, .	1.3	7
31	Highly Efficient T2 Cobalt Ferrite Nanoparticles Vectorized for Internalization in Cancer Cells. Pharmaceuticals, 2021, 14, 124.	3.8	7
32	Pitting corrosion and stress corrosion cracking study in high strength steels in alkaline media. Journal of Solid State Electrochemistry, 2016, 20, 1223-1227.	2.5	6
33	New Iron Oxide Nanoparticles Catechol-Grafted with Bis(amidoxime)s for Uranium(VI) Depletion of Aqueous Solution. Journal of Nanoscience and Nanotechnology, 2019, 19, 4911-4919.	0.9	6
34	Design of hybrid gradient porous surfaces with magnetic nanoparticles. Polymer, 2015, 70, 100-108.	3.8	5
35	Electrocatalytic Activity of Nanohybrids Based on Carbon Nanomaterials and MFe ₂ O ₄ (M=Co, Mn) towards the Reduction of Hydrogen Peroxide. Electroanalysis, 2018, 30, 1621-1626.	2.9	5
36	Improved magnetosensor for the detection of hydrogen peroxide and glucose. Journal of Solid State Electrochemistry, 2021, 25, 231-236.	2.5	4

Eva Mazario

#	Article	IF	CITATIONS
37	Direct 3D printing of zero valent iron@polylactic acid catalyst for tetracycline degradation with magnetically inducing active persulfate. Science of the Total Environment, 2022, 806, 150917.	8.0	4
38	Layered double hydroxides intercalated with methyl orange as a controlled-release corrosion in hibitor for iron in chloride media. Nano Express, 2021, 2, 010017.	2.4	3
39	The role of the temperature in the morphology and properties of zinc oxide structures obtained by electrosynthesis in aqueous solution. Materials Chemistry and Physics, 2016, 181, 367-374.	4.0	2
40	Novel, simple, and environmentally safe method for wastewater pollutant removal. Journal of Water Process Engineering, 2021, 42, 102181.	5.6	1
41	Multifunctionality of maghemite nanoparticles functionalized by HSA for drug delivery. , 2017, , .		0