
Thierry Toupance

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1549644/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanostructured SnO ₂ –ZnO Heterojunction Photocatalysts Showing Enhanced Photocatalytic Activity for the Degradation of Organic Dyes. Inorganic Chemistry, 2012, 51, 7764-7773.	1.9	504
2	Conditions of Formation of Copper Phyllosilicates in Silica-Supported Copper Catalysts Prepared by Selective Adsorption. Journal of Physical Chemistry B, 2002, 106, 2277-2286.	1.2	165
3	Material challenges for solar cells in the twenty-first century: directions in emerging technologies. Science and Technology of Advanced Materials, 2018, 19, 336-369.	2.8	162
4	The Work Function of TiO2. Surfaces, 2018, 1, 73-89.	1.0	157
5	Preparation of RuO ₂ /TiO ₂ Mesoporous Heterostructures and Rationalization of Their Enhanced Photocatalytic Properties by Band Alignment Investigations. Journal of Physical Chemistry C, 2013, 117, 22098-22110.	1.5	155
6	Metal Particle Size in Silica-Supported Copper Catalysts. Influence of the Conditions of Preparation and of Thermal Pretreatments. Journal of Physical Chemistry B, 2000, 104, 965-972.	1.2	125
7	Ionoelectronics. Cation-Induced Nonlinear Complexation: Crown Ether- and Poly(ethylene) Tj ETQq1 1 0.784314 5352-5361.	f rgBT /Ove 6.6	erlock 10 Tf 50 118
8	Improved electrochromic performances of NiO based thin films by lithium addition: From single layers to devices. Electrochimica Acta, 2012, 74, 46-52.	2.6	100
9	Synthesis, Structures, and Reactions of Titanium, Scandium, and Yttrium Complexes of Diamino-bis(phenolate) Ligands:  Monomeric, Dimeric, Neutral, Cationic, and Multiply Bonded Derivatives. Organometallics, 2005, 24, 309-330.	1.1	98
10	Band alignment investigations of heterostructure NiO/TiO ₂ nanomaterials used as efficient heterojunction earth-abundant metal oxide photocatalysts for hydrogen production. Physical Chemistry Chemical Physics, 2017, 19, 19279-19288.	1.3	96
11	Conductive F-doped Tin Dioxide Solâ^'Gel Materials from Fluorinated β-Diketonate Tin(IV) Complexes. Characterization and Thermolytic Behavior. Chemistry of Materials, 2000, 12, 3419-3426.	3.2	91
12	Zirconium Complexes of Diamineâ^'Bis(phenolate) Ligands:  Synthesis, Structures, and Solution Dynamics. Organometallics, 2002, 21, 1367-1382.	1.1	83
13	Near- and Supercritical Alcohols as Solvents and Surface Modifiers for the Continuous Synthesis of Cerium Oxide Nanoparticles. Langmuir, 2012, 28, 16656-16663.	1.6	83
14	Graphite-type activated carbon from coconut shell: a natural source for eco-friendly non-volatile storage devices. RSC Advances, 2021, 11, 2854-2865.	1.7	78
15	Size and shape fine-tuning of SnO2 nanoparticles for highly efficient and stable dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 13789.	5.2	73
16	Improved photocatalytic activity in RuO ₂ –ZnO nanoparticulate heterostructures due to inhomogeneous space charge effects. Physical Chemistry Chemical Physics, 2015, 17, 5090-5102.	1.3	73
17	New Insights into the Photocatalytic Properties of RuO ₂ /TiO ₂ Mesoporous Heterostructures for Hydrogen Production and Organic Pollutant Photodecomposition. Journal of Physical Chemistry C, 2015, 119, 7006-7015.	1.5	68
18	A new single molecular precursor route to fluorine-doped nanocrystalline tin oxide anodes for lithium batteries. Solid State Sciences, 2001, 3, 211-214.	0.8	66

#	Article	IF	CITATIONS
19	Nanocrystalline Mesoporous Tin Dioxide Prepared by the Solâ^'Gel Route from a Dialkoxydi(β-Diketonato)tin Complex. Chemistry of Materials, 2003, 15, 4691-4697.	3.2	66
20	Poly(oxyethylene)-Substituted Copper and Lutetium Phthalocyanines. The Journal of Physical Chemistry, 1996, 100, 11704-11710.	2.9	63
21	Micro-bead of nano-crystalline F-doped SnO2 as a sensitive hydrogen gas sensor. Sensors and Actuators B: Chemical, 2005, 109, 264-269.	4.0	63
22	p-Doping of a Hole Transport Material via a Poly(ionic liquid) for over 20% Efficiency and Hysteresis-Free Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 1393-1401.	2.5	60
23	Analysis of the interfacial characteristics of BiVO ₄ /metal oxide heterostructures and its implication on their junction properties. Physical Chemistry Chemical Physics, 2019, 21, 5086-5096.	1.3	56
24	A TIPS-TPDO-tetraCN-Based <i>n</i> -Type Organic Field-Effect Transistor with a Cross-linked PMMA Polymer Gate Dielectric. ACS Applied Materials & Interfaces, 2016, 8, 14701-14708.	4.0	54
25	Room Temperature UV treated WO3 thin films for electrochromic devices on paper substrate. Electrochimica Acta, 2014, 129, 113-119.	2.6	51
26	Finely Tuned SnO ₂ Nanoparticles for Efficient Detection of Reducing and Oxidizing Gases: The Influence of Alkali Metal Cation on Gas-Sensing Properties. ACS Applied Materials & Interfaces, 2018, 10, 10173-10184.	4.0	51
27	Tin dioxide thin films prepared from a new alkoxyfluorotin complex including a covalent Snî—,F bond. Thin Solid Films, 2001, 388, 41-49.	0.8	50
28	Low-Temperature UV-Processing of Nanocrystalline Nanoporous Thin TiO ₂ Films: An Original Route toward Plastic Electrochromic Systems. Chemistry of Materials, 2008, 20, 7260-7267.	3.2	49
29	New Fluorinated Stannic Compounds as Precursors of F-Doped SnO2Materials Prepared by the Solâ^'Gel Route. Inorganic Chemistry, 1999, 38, 4671-4679.	1.9	47
30	Bridged Polystannoxane: A New Route toward Nanoporous Tin Dioxide. Chemistry of Materials, 2006, 18, 6364-6372.	3.2	46
31	Tetrazole as a New Anchoring Group for the Functionalization of TiO ₂ Nanoparticles: A Joint Experimental and Theoretical Study. Journal of Physical Chemistry C, 2014, 118, 10677-10685.	1.5	46
32	Fluorine-doped nanocrystalline SnO2 powders prepared via a single molecular precursor method as anode materials for Li-ion batteries. Journal of Solid State Chemistry, 2006, 179, 702-707.	1.4	45
33	Low-Temperature UV Processing of Nanoporous SnO ₂ Layers for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2011, 3, 1485-1491.	4.0	45
34	CeO 2 nanopowders as solid sorbents for efficient CO 2 capture/release processes. Journal of CO2 Utilization, 2017, 20, 52-58.	3.3	45
35	In situ characterization of the coordination sphere of Cull complexes supported on silica during the preparation of Cu/SiO2 catalysts by cation exchange. Physical Chemistry Chemical Physics, 2000, 2, 2005-2014.	1.3	43
36	Electrochemical detection of 2-nitrophenol using a heterostructure ZnO/RuO ₂ nanoparticle modified glassy carbon electrode. RSC Advances, 2020, 10, 122-132.	1.7	43

#	Article	IF	CITATIONS
37	Organic–Inorganic Sn12 and Organic Sn6 Oxide–Hydroxide Clusters. Angewandte Chemie - International Edition, 2006, 45, 1255-1258.	7.2	41
38	Functional crosslinked polymer particles synthesized by precipitation polymerization for liquid chromatography. Journal of Chromatography A, 2008, 1179, 2-8.	1.8	41
39	Nanoscaled tin dioxide films processed from organotin-based hybrid materials: an organometallic route toward metal oxide gas sensors. Nanoscale, 2012, 4, 6806.	2.8	40
40	CeO ₂ Nanocrystals from Supercritical Alcohols: New Opportunities for Versatile Functionalizations?. Langmuir, 2014, 30, 5965-5972.	1.6	40
41	Immobilization of ionic liquids in translucent tin dioxide monoliths by sol–gel processing. Dalton Transactions, 2009, , 1307.	1.6	39
42	Vanadium doped SnO2 nanoparticles for photocatalytic degradation of methylene blue. Journal of Materials Science: Materials in Electronics, 2017, 28, 15826-15834.	1.1	39
43	Influence of zinc doping on the photocatalytic activity of nanocrystalline SnO2 particles synthesized by the polyol method for enhanced degradation of organic dyes. Journal of Alloys and Compounds, 2017, 729, 638-647.	2.8	38
44	Energy-Band Alignment of BiVO ₄ from Photoelectron Spectroscopy of Solid-State Interfaces. Journal of Physical Chemistry C, 2018, 122, 20861-20870.	1.5	38
45	Pinning of the Fermi Level in CuFeO ₂ by Polaron Formation Limiting the Photovoltage for Photochemical Water Splitting. Advanced Functional Materials, 2020, 30, 1910432.	7.8	38
46	Ionoelectronics. Pillarlike Aggregates Formed via Highly Nonlinear Complexation Processes. A Light-Scattering Study. Journal of the American Chemical Society, 1997, 119, 9191-9197.	6.6	37
47	Self-Assembled Tin-Based Bridged Hybrid Materials. Journal of the American Chemical Society, 2004, 126, 8130-8131.	6.6	37
48	A simple route towards low-temperature processing of nanoporous thin films using UV-irradiation: Application for dye solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 205, 70-76.	2.0	36
49	Tuning visible-light absorption properties of Ru–diacetylide complexes: simple access to colorful efficient dyes for DSSCs. Journal of Materials Chemistry A, 2015, 3, 18256-18264.	5.2	36
50	Semiconductivity and gas-sensing properties of crown-ether-substituted lutetium bisphthalocyanines. Sensors and Actuators B: Chemical, 1995, 26, 150-152.	4.0	35
51	Tin Dioxide Materials Chemically Modified with Trialkynylorganotins: Functional Nanohybrids for Photovoltaic Applications. Advanced Materials, 2006, 18, 1073-1077.	11.1	35
52	Alkylchlorotins Grafted to Cross-Linked Polystyrene Beads by a ?(CH2)n? Spacer (n=4, 6, 11): Selective, Clean and Recyclable Catalysts for Transesterification Reactions. Chemistry - A European Journal, 2005, 11, 2455-2461.	1.7	33
53	Push–pull ruthenium diacetylide complexes: new dyes for p-type dye-sensitized solar cells. RSC Advances, 2016, 6, 19928-19936.	1.7	33
54	The First Mixed-Valence Fluorotin Alkoxides:Â New Solâ^'Gel Precursors of Fluorine-Doped Tin Oxide Materials. Inorganic Chemistry, 2000, 39, 3924-3927.	1.9	32

#	Article	IF	CITATIONS
55	Dichlorodistannoxane transesterification catalysts, pure Lewis acids. Chemical Communications, 2003, , 1428.	2.2	32
56	Structural and optical properties of vanadium doped SnO 2 nanoparticles synthesized by the polyol method. Optical Materials, 2016, 54, 139-146.	1.7	32
57	Fermi Level Positions and Induced Band Bending at Single Crystalline Anatase (101) and (001) Surfaces: Origin of the Enhanced Photocatalytic Activity of Facet Engineered Crystals. Advanced Energy Materials, 2018, 8, 1802195.	10.2	32
58	A General Route to Alkylene-, Arylene-, or Benzylene-Bridged Ditin Hexachlorides and Hexaalkynides. Organometallics, 2002, 21, 4590-4594.	1.1	31
59	TIPS-triphenodioxazine versus TIPS-pentacene: Enhanced electron mobility for n-type organic field-effect transistors. Organic Electronics, 2012, 13, 1392-1400.	1.4	30
60	Functionalization of a Ruthenium–Diacetylide Organometallic Complex as a Nextâ€Generation Push–Pull Chromophore. Chemistry - A European Journal, 2014, 20, 7017-7024.	1.7	30
61	Hybrid Organotin and Tin Oxide-based Thin Films Processed from Alkynylorganotins: Synthesis, Characterization, and Gas Sensing Properties ACS Applied Materials & Interfaces, 2014, 6, 17093-17101.	4.0	28
62	New Group 4 Organometallic and Imido Compounds of Diamide-Diamine and Related Dianionic O2N2-Donor Ligands. Organometallics, 2005, 24, 5586-5603.	1.1	26
63	Nickel Oxide Selectively Deposited on the {101} Facet of Anatase TiO ₂ Nanocrystal Bipyramids for Enhanced Photocatalysis. ACS Applied Nano Materials, 2019, 2, 4793-4803.	2.4	26
64	H ₂ -Evolving Dye-Sensitized Photocathode Based on a Ruthenium–Diacetylide/Cobaloxime Supramolecular Assembly. ACS Applied Energy Materials, 2019, 2, 4971-4980.	2.5	26
65	Substituted bis(phthalocyanines): electrochemical properties and probe beam deflection (mirage) studies. New Journal of Chemistry, 1999, 23, 1001-1006.	1.4	25
66	Efficient bismuth catalysts for transcarbamoylation. Tetrahedron Letters, 2002, 43, 6305-6307.	0.7	25
67	Fineâ€Tuning of Triarylamineâ€Based Photosensitizers for Dyeâ€Sensitized Solar Cells. ChemSusChem, 2011, 4, 731-736.	3.6	25
68	Molecular engineering of carbazole-fluorene sensitizers for high open-circuit voltage DSSCs: Synthesis and performance comparison with iodine and cobalt electrolytes. Dyes and Pigments, 2015, 118, 76-87.	2.0	24
69	Nitrile Substitution Effect on Triphenodioxazineâ€Based Materials for Liquidâ€Processed Airâ€Stable nâ€Type Organic Field Effect Transistors. Advanced Electronic Materials, 2015, 1, 1500072.	2.6	23
70	Computational design of new organic (D–π–A) dyes based on benzothiadiazole for photovoltaic applications, especially dye-sensitized solar cells. Research on Chemical Intermediates, 2020, 46, 3247-3262.	1.3	23
71	Structure and absorption properties of the C212 dye chemisorbed onto the TiO2 (101) anatase surface. Chemical Physics Letters, 2013, 556, 151-157.	1.2	22
72	Design and synthesis of novel organometallic dyes for NiO sensitization and photo-electrochemical applications. Dalton Transactions, 2016, 45, 12539-12547.	1.6	21

#	Article	IF	CITATIONS
73	New n-type molecular semiconductor–doped insulator (MSDI) heterojunctions combining a triphenodioxazine (TPDO) and the lutetium bisphthalocyanine (LuPc2) for ammonia sensing. Sensors and Actuators B: Chemical, 2018, 255, 1694-1700.	4.0	21
74	Investigations in the catalytic species of the distannoxane-catalyzed transcarbamoylation. Tetrahedron Letters, 2003, 44, 5983-5985.	0.7	20
75	Low-temperature H2sensing in self-assembled organotin thin films. Chemical Communications, 2011, 47, 1464-1466.	2.2	20
76	Combined computational and experimental study of carbazole dyes for iodide- and cobalt-based ZnO DSSCs. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 341, 69-77.	2.0	19
77	Rapid synthesis of ultra-long silver nanowires for high performance transparent electrodes. Nanoscale Advances, 2020, 2, 3804-3808.	2.2	19
78	Electrochemistry of a new carbon-rich fluorine-doped tin oxide (CFTO) material as a powder electrode in chloride electrolytes. Electrochimica Acta, 2002, 47, 1385-1394.	2.6	18
79	Photoelectrochemical behaviour of a dye-grafted nanocrystalline SnO2 powder. Journal of Electroanalytical Chemistry, 2004, 572, 249-255.	1.9	18
80	New Synthetic Routes towards Soluble and Dissymmetric Triphenodioxazine Dyes Designed for Dye‧ensitized Solar Cells. Chemistry - A European Journal, 2014, 20, 3678-3688.	1.7	18
81	Functionalization of Silica Gel with Organotrialkynyltins:Â New Method of Covalent Attachment of Organic Groups on Silica Gel. Chemistry of Materials, 2005, 17, 1803-1811.	3.2	17
82	Textural, structural and electrical properties of SnO2 nanoparticles prepared by the polyol method. Journal of Materials Science: Materials in Electronics, 2015, 26, 1612-1618.	1.1	17
83	Biomass-derived carbon electrodes for supercapacitors and hybrid solar cells: towards sustainable photo-supercapacitors. Sustainable Energy and Fuels, 2021, 5, 4784-4806.	2.5	17
84	Remarkable 8.3% efficiency and extended electron lifetime towards highly stable semi-transparent iodine-free DSSCs by mitigating the in-situ triiodide generation. Chemical Engineering Journal, 2022, 446, 136777.	6.6	17
85	Iono-electronics: crown ether substituted lutetium bisphthalocyanines. Journal of the Chemical Society Chemical Communications, 1994, , 75.	2.0	16
86	Sn3and Sn10sulfonate–oxide–hydroxide clusters with two different sulfonate binding modes. Dalton Transactions, 2007, , 3121-3123.	1.6	16
87	Oligocarbazoleâ€Based Chromophores for Efficient Thinâ€Film Dyeâ€&ensitized Solar Cells. ChemSusChem, 2013, 6, 993-996.	3.6	16
88	Effect of hydrolysis ratio on structural, optical and electrical properties of SnO2 nanoparticles synthesized by polyol method. Optical Materials, 2016, 58, 142-150.	1.7	16
89	Sunlight Selective Photodeposition of CoO _{<i>x</i>} (OH) _{<i>y</i>} and NiO _{<i>x</i>} (OH) _{<i>y</i>} on Truncated Bipyramidal BiVO ₄ for Highly Efficient Photocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 53910-53920.	4.0	16
90	Thermally Induced Elimination Reactions in Xerosols Derived from (Fluoroorgano)tin Compounds:Â A New Efficient Way To Prepare F-Doped Tin Dioxide Materials. Chemistry of Materials, 2000, 12, 3100-3107.	3.2	15

#	Article	IF	CITATIONS
91	Image processing for the characterization of porous silicon nanostructure. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1675-1679.	0.8	15
92	New Perylene-Substituted Organotrialkynyltin Compounds for the Photosensitization of Tin Dioxide. Organometallics, 2003, 22, 4584-4592.	1.1	14
93	A doubly folded spacer in a self-assembled hybrid material. Chemical Communications, 2006, , 1304.	2.2	14
94	Modifying the Flexibility of Water Cages by Co-Including Acidic Species within Clathrate Hydrate. Journal of Physical Chemistry C, 2015, 119, 8904-8911.	1.5	14
95	Tuning bimodal porosity in TiO2 photoanodes towards efficient solid-state dye-sensitized solar cells comprising polysiloxane-based polymer electrolyte. Microporous and Mesoporous Materials, 2019, 273, 226-234.	2.2	14
96	Particle Growth of Hybrid Materials Followed by Dynamic Light Scattering. Langmuir, 2007, 23, 785-789.	1.6	13
97	Effect of Thermal Treatment on the Textural Properties of CeO ₂ Powders Synthesized in Near―and Supercritical Alcohols. ChemPhysChem, 2015, 16, 3493-3499.	1.0	13
98	Infrared absorption by molecular gases to probe porous materials and comparisons with other techniques. Microporous and Mesoporous Materials, 2017, 237, 31-37.	2.2	13
99	Sensing of Airborne Infochemicals for Green Pest Management: What Is the Challenge?. ACS Sensors, 2021, 6, 3824-3840.	4.0	13
100	α,ω-Bis(trialkynyltin) Compounds with a Linear or Cross-Shaped Spacer. Organometallics, 2007, 26, 3908-3917.	1.1	12
101	Ionic-Liquid-like Polysiloxane Electrolytes for Highly Stable Solid-State Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2018, 1, 4106-4114.	2.5	12
102	Molecular engineering of ruthenium-diacetylide organometallic complexes towards efficient green dye for DSSC. Dyes and Pigments, 2018, 158, 326-333.	2.0	11
103	pH-Mediated Colorimetric and Luminescent Sensing of Aqueous Nitrate Anions by a Platinum(II) Luminophore@Mesoporous Silica Composite. ACS Applied Materials & Interfaces, 2021, 13, 16197-16209.	4.0	11
104	Nanocrystalline F-doped tin dioxide materials: texture, morphology and photosensitization with a perylene-substituted organotin. Journal of Fluorine Chemistry, 2004, 125, 1247-1254.	0.9	10
105	Bimodal titanium oxide photoelectrodes with tuned porosity for improved light harvesting and polysiloxane-based polymer electrolyte infiltration. Solar Energy, 2019, 178, 98-107.	2.9	10
106	Incorporating W cations into ZnO nanosheets: an efficient method towards ZnO/ZnWO ₄ photocatalysts for highly effective degradation of organic compounds under UV and visible-light irradiation. New Journal of Chemistry, 2021, 45, 11051-11067.	1.4	10
107	A new route towards nanoporous TiO2 as powders or thin films from the thermal treatment of titanium-based hybrid materials. Dalton Transactions, 2012, 41, 292-299.	1.6	9
108	Efficiency enhancement in solid state dye sensitized solar cells by including inverse opals with controlled layer thicknesses. Photonics and Nanostructures - Fundamentals and Applications, 2016, 21, 13-18.	1.0	9

#	Article	IF	CITATIONS
109	Supercritical CO2-assisted deposition of NiO on (101)-anatase-TiO2 for efficient facet engineered photocatalysts. New Journal of Chemistry, 2018, 42, 18649-18658.	1.4	9
110	Synthesis and characterization of multi-wall silica nanospheres. Materials Letters, 2005, 59, 817-820.	1.3	8
111	Linear or cross-shaped di(cyclopentadienyltitanium) compounds with aryl or heteroaryl spacers. Dalton Transactions, 2011, 40, 457-462.	1.6	8
112	Silica-anchored organotin trichloride: a recyclable and clean organotin catalyst for transesterification reactions. Dalton Transactions, 2013, 42, 9764.	1.6	8
113	Post-functionalization of polyvinylcarbazoles: An open route towards hole transporting materials for perovskite solar cells. Solar Energy, 2019, 193, 878-884.	2.9	8
114	Alkynylorganotins, versatile precursors of class II hybrid materials. Applied Organometallic Chemistry, 2007, 21, 514-520.	1.7	7
115	FLUORINATED ORGANOTINS AS PRECURSORS OF F-DOPED TIN DIOXIDE. Main Group Metal Chemistry, 2002, 25, .	0.6	6
116	Discovering the Determining Parameters for the Photocatalytic Activity of TiO ₂ Colloids Based on an Anomalous Dependence on the Specific Surface Area. Particle and Particle Systems Characterization, 2018, 35, 1800216.	1.2	6
117	Plasticized I2-free polysiloxane ionic conductors as electrolytes for stable and flexible solid-state dye-sensitized solar cells. Applied Surface Science Advances, 2021, 5, 100120.	2.9	6
118	Design of Binary Nb ₂ O ₅ –SiO ₂ Self-Standing Monoliths Bearing Hierarchical Porosity and Their Efficient Friedel–Crafts Alkylation/Acylation Catalytic Properties. ACS Applied Materials & Interfaces, 2022, 14, 13305-13316.	4.0	6
119	Studies on the disproportionation of trichloromethyltin. Applied Organometallic Chemistry, 2003, 17, 631-634.	1.7	5
120	Synthesis and Characterization of Lipophilic Organotins. Application to the Functionalization of Silica Gel. Organometallics, 2007, 26, 5576-5580.	1.1	5
121	Self-assembled titanium-based hybrids with cyclopentadienyl–titanium network bonding. Chemical Communications, 2011, 47, 5001.	2.2	5
122	One-pot easily-processed TiO2 macroporous photoanodes (Ti-HIPE) for dye-sensitized solar cells. Solid State Sciences, 2014, 28, 81-89.	1.5	5
123	Porosity induced rigidochromism in platinum(<scp>ii</scp>) terpyridyl luminophores immobilized at silica composites. Journal of Materials Chemistry C, 2021, 9, 6193-6207.	2.7	5
124	Tin-based hybrid materials with a two-level structural hierarchy. Journal of Sol-Gel Science and Technology, 2008, 48, 6-10.	1.1	4
125	A discrete unsymmetrically substituted dihydrodioxadistannetane with both η1 and intramolecular η2μ2 sulfonate bondings. Journal of Organometallic Chemistry, 2008, 693, 3383-3386.	0.8	4
126	A new spacer-induced organization in highly ordered tin-based hybrid materials. Dalton Transactions, 2009, , 4429.	1.6	4

#	Article	IF	CITATIONS
127	Photoelectrochemical properties of WO3-modified anatase TiO2 photoanodes and application for dye-sensitized solar cells. Surfaces and Interfaces, 2021, 27, 101543.	1.5	4
128	Alkylchlorotins Grafted to Cross-Linked Polystyrene Beads by a (CH2)n Spacer (n=4, 6, 11): Selective, Clean and Recyclable Catalysts for Transesterification Reactions. Chemistry - A European Journal, 2005, 11, 3500-3500.	1.7	2
129	Materials Chemistry and Structural Chemistry of Tin Compounds. , 0, , 285-411.		2
130	Functional Organotin Alkynides as Precursors of Tin-Based Hybrid Materials. Materials Research Society Symposia Proceedings, 2000, 628, 1.	0.1	1
131	Tin-Based Hybrid Materials as Precursors of Mesoporous Tin Oxide. Materials Research Society Symposia Proceedings, 2002, 726, 1.	0.1	1
132	Dichlorobis(pyridine-κN)bis(3,3,3-trifluoropropyl-κC1)tin(IV). Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, m363-m364.	0.4	1
133	Low Temperature Preparation Routes of Nanoporous Semi-Conducting Films for Flexible Dye-Sensitized Solar Cells. ACS Symposium Series, 2013, , 143-172.	0.5	1
134	Fluorine-doped tin oxide electrods for lithium batteries. , 2005, , 103-123.		0
135	Dye-Sensitization of Tin Dioxide via the Functionalization of Oxide Surfaces with Trialkynylorganotins. Materials Research Society Symposia Proceedings, 2005, 876, 1.	0.1	0
136	Electrochemical and Spectroelectrochemical Behavior of a Tetracyanotriphenodioxazine in Solution and Thinâ€Films. ChemElectroChem, 2018, 5, 2863-2872.	1.7	0
137	Direct Triple Annulations: A Way to Design Large Triazastarphenes with Intertwined Hexagonal Packing. Organic Letters, 2022, 24, 344-348.	2.4	0