Nissim Benvenisty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1549425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	pRB-Depleted Pluripotent Stem Cell Retinal Organoids Recapitulate Cell State Transitions of Retinoblastoma Development and Suggest an Important Role for pRB in Retinal Cell Differentiation. Stem Cells Translational Medicine, 2022, 11, 415-433.	1.6	15
2	Genome-wide analysis of haploinsufficiency in human embryonic stem cells. Cell Reports, 2022, 38, 110573.	2.9	4
3	Comprehensive analysis of DNA replication timing across 184 cell lines suggests a role for <i>MCM10</i> in replication timing regulation. Human Molecular Genetics, 2022, 31, 2899-2917.	1.4	6
4	Genome-wide screening for genes involved in the epigenetic basis of fragile X syndrome. Stem Cell Reports, 2022, 17, 1048-1058.	2.3	6
5	Large-Scale Analysis of X Inactivation Variations between Primed and NaÃ⁻ve Human Embryonic Stem Cells. Cells, 2022, 11, 1729.	1.8	2
6	The Tumorigenic Potential of Human Pluripotent Stem Cells. Stem Cells Translational Medicine, 2022, 11, 791-796.	1.6	8
7	Cancer-Related Mutations Identified in Primed Human Pluripotent Stem Cells. Cell Stem Cell, 2021, 28, 10-11.	5.2	35
8	Modeling Maturity Onset Diabetes of the Young in Pluripotent Stem Cells: Challenges and Achievements. Frontiers in Endocrinology, 2021, 12, 622940.	1.5	4
9	Identification of cancer-related mutations in human pluripotent stem cells using RNA-seq analysis. Nature Protocols, 2021, 16, 4522-4537.	5.5	8
10	Large-scale analysis of imprinting in naive human pluripotent stem cells reveals recurrent aberrations and a potential link to FGF signaling. Stem Cell Reports, 2021, 16, 2520-2533.	2.3	11
11	Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells. Nature Communications, 2021, 12, 6718.	5.8	12
12	Delayed DNA replication in haploid human embryonic stem cells. Genome Research, 2021, 31, 2155-2169.	2.4	5
13	Mapping Gene Circuits Essential for Germ Layer Differentiation via Loss-of-Function Screens in Haploid Human Embryonic Stem Cells. Cell Stem Cell, 2020, 27, 679-691.e6.	5.2	24
14	Human pluripotent stem cells: derivation and applications. Nature Reviews Molecular Cell Biology, 2020, , .	16.1	5
15	The Chromatin Regulator ZMYM2 Restricts Human Pluripotent Stem Cell Growth and Is Essential for Teratoma Formation. Stem Cell Reports, 2020, 15, 1275-1286.	2.3	13
16	Defining Human Pluripotency. Cell Stem Cell, 2019, 25, 9-22.	5.2	67
17	Distinct Imprinting Signatures and Biased Differentiation of Human Androgenetic and Parthenogenetic Embryonic Stem Cells. Cell Stem Cell, 2019, 25, 419-432.e9.	5.2	31
18	Genome-wide Screen for Culture Adaptation and Tumorigenicity-Related Genes in Human Pluripotent Stem Cells. IScience, 2019, 11, 398-408.	1.9	7

#	Article	IF	CITATIONS
19	Epigenetic aberrations in human pluripotent stem cells. EMBO Journal, 2019, 38, .	3.5	86
20	FMR1 Reactivating Treatments in Fragile X iPSC-Derived Neural Progenitors InÂVitro and InÂVivo. Cell Reports, 2019, 26, 2531-2539.e4.	2.9	27
21	Global Characterization of X Chromosome Inactivation in Human Pluripotent Stem Cells. Cell Reports, 2019, 27, 20-29.e3.	2.9	47
22	Genomic Imprinting and Physiological Processes in Mammals. Cell, 2019, 176, 952-965.	13.5	395
23	The essentiality landscape of cell cycle related genes in human pluripotent and cancer cells. Cell Division, 2019, 14, 15.	1.1	13
24	Defining essential genes for human pluripotent stem cells by CRISPR–Cas9 screening in haploid cells. Nature Cell Biology, 2018, 20, 610-619.	4.6	107
25	Mice from Same-Sex Parents: CRISPRing Out the Barriers for Unisexual Reproduction. Cell Stem Cell, 2018, 23, 625-627.	5.2	1
26	Derivation and molecular characterization of pancreatic differentiated MODY1-iPSCs. Stem Cell Research, 2018, 31, 16-26.	0.3	22
27	Modeling Developmental and Tumorigenic Aspects of Trilateral Retinoblastoma via Human Embryonic Stem Cells. Stem Cell Reports, 2017, 8, 1354-1365.	2.3	25
28	Large-Scale Analysis of Loss of Imprinting in Human Pluripotent Stem Cells. Cell Reports, 2017, 19, 957-968.	2.9	71
29	Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature, 2017, 545, 229-233.	13.7	409
30	Human pluripotent stem cells in modeling human disorders: the case of fragile X syndrome. Regenerative Medicine, 2017, 12, 53-68.	0.8	4
31	Haploidy in Humans: An Evolutionary and Developmental Perspective. Developmental Cell, 2017, 41, 581-589.	3.1	23
32	Culture-induced recurrent epigenetic aberrations in human pluripotent stem cells. PLoS Genetics, 2017, 13, e1006979.	1.5	38
33	Aspiring to naivety. Nature, 2016, 540, 211-212.	13.7	6
34	Analysis of chromosomal aberrations and recombination by allelic bias in RNA-Seq. Nature Communications, 2016, 7, 12144.	5.8	72
35	Setting Global Standards for Stem Cell Research and Clinical Translation: TheÂ2016 ISSCR Guidelines. Stem Cell Reports, 2016, 6, 787-797.	2.3	172
36	Chromosomal Instability and Molecular Defects in Induced Pluripotent Stem Cells from Nijmegen Breakage Syndrome Patients. Cell Reports, 2016, 16, 2499-2511.	2.9	10

#	Article	IF	CITATIONS
37	Molecular Characterization of Down Syndrome Embryonic Stem Cells Reveals a Role for RUNX1 in Neural Differentiation. Stem Cell Reports, 2016, 7, 777-786.	2.3	33
38	Efficient Generation of Viral and Integrationâ€Free Human Induced Pluripotent Stem Cellâ€Derived Oligodendrocytes. Current Protocols in Stem Cell Biology, 2016, 38, 2D.18.1-2D.18.27.	3.0	10
39	Efficient Generation of Viral and Integrationâ€Free Human Induced Pluripotent Stem Cellâ€Derived Oligodendrocytes. Current Protocols in Stem Cell Biology, 2016, 39, 2D.18.1-2D.18.28.	3.0	11
40	Identification and propagation of haploid human pluripotent stem cells. Nature Protocols, 2016, 11, 2274-2286.	5.5	9
41	Haploid Human Embryonic Stem Cells: Half the Genome, Double the Value. Cell Stem Cell, 2016, 19, 569-572.	5.2	27
42	Pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Molecular Cell Biology, 2016, 17, 170-182.	16.1	488
43	Genomic Instability in Human Pluripotent Stem Cells Arises from Replicative Stress and Chromosome Condensation Defects. Cell Stem Cell, 2016, 18, 253-261.	5.2	106
44	Derivation and differentiation of haploid human embryonic stem cells. Nature, 2016, 532, 107-111.	13.7	124
45	Creating Patient-Specific Neural Cells for the InÂVitro Study of Brain Disorders. Stem Cell Reports, 2015, 5, 933-945.	2.3	72
46	Molecular Mechanisms Regulating the Defects in Fragile X Syndrome Neurons Derived from Human Pluripotent Stem Cells. Stem Cell Reports, 2015, 4, 37-46.	2.3	81
47	TeratoScore: Assessing the Differentiation Potential of Human Pluripotent Stem Cells by Quantitative Expression Analysis of Teratomas. Stem Cell Reports, 2015, 4, 967-974.	2.3	50
48	Differentiation of Human Parthenogenetic Pluripotent Stem Cells Reveals Multiple Tissue- and Isoform-Specific Imprinted Transcripts. Cell Reports, 2015, 11, 308-320.	2.9	20
49	Hallmarks of pluripotency. Nature, 2015, 525, 469-478.	13.7	338
50	rsPSCs: A new type of pluripotent stem cells. Cell Research, 2015, 25, 889-890.	5.7	1
51	Reversion of FMR1 Methylation and Silencing by Editing the Triplet Repeats in Fragile X iPSC-Derived Neurons. Cell Reports, 2015, 13, 234-241.	2.9	157
52	Elimination of undifferentiated cancer cells by pluripotent stem cell inhibitors. Journal of Molecular Cell Biology, 2014, 6, 267-269.	1.5	12
53	Virtual Karyotyping Reveals Greater Chromosomal Stability in Neural Cells Derived by Transdifferentiation than Those from Stem Cells. Cell Stem Cell, 2014, 15, 687-691.	5.2	24
54	Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature, 2014, 510, 533-536.	13.7	189

#	Article	IF	CITATIONS
55	The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome. Nature Genetics, 2014, 46, 551-557.	9.4	129
56	Comparable Frequencies of Coding Mutations and Loss of Imprinting in Human Pluripotent Cells Derived by Nuclear Transfer and Defined Factors. Cell Stem Cell, 2014, 15, 634-642.	5.2	113
57	Genome maintenance in pluripotent stem cells. Journal of Cell Biology, 2014, 204, 153-163.	2.3	157
58	Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nature Communications, 2014, 5, 4825.	5.8	148
59	Sex-Dependent Gene Expression in Human Pluripotent Stem Cells. Cell Reports, 2014, 8, 923-932.	2.9	57
60	Chemical ablation of tumor-initiating human pluripotent stem cells. Nature Protocols, 2014, 9, 729-740.	5.5	46
61	Aberrant DNA Methylation in ES Cells. PLoS ONE, 2014, 9, e96090.	1.1	11
62	Identification of Novel Imprinted Differentially Methylated Regions by Global Analysis of Human-Parthenogenetic-Induced Pluripotent Stem Cells. Stem Cell Reports, 2013, 1, 79-89.	2.3	27
63	Human Pluripotent Stem Cells with Distinct X Inactivation Status Show Molecular and Cellular Differences Controlled by the X-Linked ELK-1 Gene. Cell Reports, 2013, 4, 262-270.	2.9	27
64	Selective Elimination of Human Pluripotent Stem Cells by an Oleate Synthesis Inhibitor Discovered in a High-Throughput Screen. Cell Stem Cell, 2013, 12, 167-179.	5.2	277
65	Global Indiscriminate Methylation in Cell-Specific Gene Promoters following Reprogramming into Human Induced Pluripotent Stem Cells. Stem Cell Reports, 2013, 1, 509-517.	2.3	11
66	Virtual karyotyping of pluripotent stem cells on the basis of their global gene expression profiles. Nature Protocols, 2013, 8, 989-997.	5.5	44
67	Involvement of parental imprinting in the antisense regulation of onco-miR-372-373. Nature Communications, 2013, 4, 2724.	5.8	16
68	Molecular analysis of FMR1 reactivation in fragile-X induced pluripotent stem cells and their neuronal derivatives. Journal of Molecular Cell Biology, 2012, 4, 180-183.	1.5	71
69	Expanding the Boundaries of Embryonic Stem Cells. Cell Stem Cell, 2012, 10, 666-677.	5.2	58
70	The in vitro survival of human monosomies and trisomies as embryonic stem cells. Stem Cell Research, 2012, 9, 218-224.	0.3	21
71	Stepwise differentiation of human embryonic stem cells into early endoderm derivatives and their molecular characterization. Stem Cell Research, 2012, 8, 335-345.	0.3	15
72	Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nature Biotechnology, 2011, 29, 1132-1144.	9.4	509

#	Article	IF	CITATIONS
73	Assessing the Safety of Stem Cell Therapeutics. Cell Stem Cell, 2011, 8, 618-628.	5.2	205
74	Epigenetic Memory and Preferential Lineage-Specific Differentiation in Induced Pluripotent Stem Cells Derived from Human Pancreatic Islet Beta Cells. Cell Stem Cell, 2011, 9, 17-23.	5.2	563
75	Large-Scale Analysis Reveals Acquisition of Lineage-Specific Chromosomal Aberrations in Human Adult Stem Cells. Cell Stem Cell, 2011, 9, 97-102.	5.2	218
76	The tumorigenicity of human embryonic and induced pluripotent stem cells. Nature Reviews Cancer, 2011, 11, 268-277.	12.8	785
77	Global analysis of parental imprinting in human parthenogenetic induced pluripotent stem cells. Nature Structural and Molecular Biology, 2011, 18, 735-741.	3.6	38
78	Meta-analysis of the heterogeneity of X chromosome inactivation in human pluripotent stem cells. Stem Cell Research, 2011, 6, 187-193.	0.3	67
79	Characterization of Gastrulation-Stage Progenitor Cells and Their Inhibitory Crosstalk in Human Embryoid Bodies Â. Stem Cells, 2010, 28, 75-83.	1.4	28
80	Human embryonic stem cells from aneuploid blastocysts identified by pre-implantation genetic screening. In Vitro Cellular and Developmental Biology - Animal, 2010, 46, 309-316.	0.7	20
81	Human Embryonic Stem Cells as Models for Aneuploid Chromosomal Syndromes. Stem Cells, 2010, 28, 1530-1540.	1.4	81
82	High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nature Biotechnology, 2010, 28, 371-377.	9.4	258
83	Differential Modeling of Fragile X Syndrome by Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Cell Stem Cell, 2010, 6, 407-411.	5.2	380
84	Identification and Classification of Chromosomal Aberrations in Human Induced Pluripotent Stem Cells. Cell Stem Cell, 2010, 7, 521-531.	5.2	695
85	Cell Lines Derived from Human Parthenogenetic Embryos Can Display Aberrant Centriole Distribution and Altered Expression Levels of Mitotic Spindle Check-point Transcripts. Stem Cell Reviews and Reports, 2009, 5, 340-352.	5.6	40
86	Clone- and Gene-Specific Aberrations of Parental Imprinting in Human Induced Pluripotent Stem Cells. Stem Cells, 2009, 27, 2686-2690.	1.4	171
87	Induced Pluripotent Stem Cells and Embryonic Stem Cells Are Distinguished by Gene Expression Signatures. Cell Stem Cell, 2009, 5, 111-123.	5.2	915
88	Derivation of Euploid Human Embryonic Stem Cells from Aneuploid Embryos. Stem Cells, 2008, 26, 1874-1882.	1.4	69
89	Developmental Study of Fragile X Syndrome Using Human Embryonic Stem Cells Derived from Preimplantation Genetically Diagnosed Embryos. Cell Stem Cell, 2007, 1, 568-577.	5.2	263
90	Clonal Analysis of Human Embryonic Stem Cell Differentiation into Teratomas. Stem Cells, 2007, 25, 1924-1930.	1.4	55

#	Article	IF	CITATIONS
91	Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotechnology, 2007, 25, 803-816.	9.4	983
92	Human embryonic stem cells as a model for early human development. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2004, 18, 929-940.	1.4	56
93	Europe and the stem cell debate. Trends in Biotechnology, 2002, 20, 183.	4.9	2
94	A DNA microarray screen for genes involved in c-MYC and N-MYC oncogenesis in human tumors. Oncogene, 2001, 20, 4984-4994.	2.6	60
95	Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Current Biology, 2001, 11, 514-518.	1.8	360
96	Differentiation of Human Embryonic Stem Cells into Embryoid Bodies Comprising the Three Embryonic Germ Layers. Molecular Medicine, 2000, 6, 88-95.	1.9	1,377
97	Involvement of branched-chain amino acid aminotransferase (Bcat1/Eca39) in apoptosis. FEBS Letters, 1999, 457, 255-261.	1.3	45
98	Involvement of Myc targets in c-myc and N-myc induced human tumors. Oncogene, 1998, 17, 165-171.	2.6	87
99	Characterization of a branched-chain amino-acid aminotransferase fromSchizosaccharomyces pombe. , 1998, 14, 189-194.		18
100	Identification of Differentially Expressed Genes During Hepatocytes Development and Characterization of their Prenatal Hormonal Induction. FEBS Journal, 1996, 242, 550-556.	0.2	1
101	BK1: An FGF-Responsive Central Nervous System-Derived Cell Line. Growth Factors, 1995, 12, 49-55.	0.5	5
102	Part B: Directed Differentiation of Human Embryonic Stem Cells into Hepatic Cells. , 0, , 187-194.		0