
MarÃ-a A Pérez-FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1549381/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphate and phosphite have a differential impact on the proteome and phosphoproteome of Arabidopsis suspension cell cultures. Plant Journal, 2021, 105, 924-941.	5.7	24
2	Symbionts in <i>Mucuna pruriens</i> stimulate plant performance through nitrogen fixation and improved phosphorus acquisition. Journal of Plant Ecology, 2021, 14, 310-322.	2.3	2
3	Understanding the morphological and genetic distinctiveness of the Spanish pouter pigeons: the Marchenero Pouter as a case study. Ibis, 2020, 162, 766-777.	1.9	3
4	Soil nutrition, microbial composition and associated soil enzyme activities in KwaZulu-Natal grasslands and savannah ecosystems soils. Applied Soil Ecology, 2020, 155, 103663.	4.3	18
5	Nitrogen and phosphorus influence Acacia saligna invasiveness in the fynbos biome. Plant Ecology, 2020, 221, 309-320.	1.6	6
6	Regulatory effect of phosphorus and nitrogen on nodulation and plant performance of leguminous shrubs. AoB PLANTS, 2019, , .	2.3	22
7	Phosphorus and Nitrogen Modulate Plant Performance in Shrubby Legumes from the Iberian Peninsula. Plants, 2019, 8, 334.	3.5	14
8	Seed provenance determines germination responses of Rumex crispus (L.) under water stress and nutrient availability. Journal of Plant Ecology, 2019, 12, 949-961.	2.3	5
9	Nutritional status of soils from KwaZulu-Natal modulate symbiotic interactions and plant performance in Vigna unguiculata L. (Walp). Applied Soil Ecology, 2019, 142, 1-7.	4.3	9
10	Differential patterns of nitrogen nutrition and growth cost of the indigenous Vachellia sieberiana and the introduced Chromolaena odorata in the savannah environment. AoB PLANTS, 2019, 11, plz008.	2.3	4
11	Roots and Nodules Response Differently to P Starvation in the Mediterranean-Type Legume Virgilia divaricata. Frontiers in Plant Science, 2019, 10, 73.	3.6	23
12	Variation in rhizosphere nutrient cycling affects the source of nitrogen acquisition in wild and cultivated Aspalathus linearis (N.L.Burm.) R.Dahlgren plants. Applied Soil Ecology, 2018, 130, 26-33.	4.3	5
13	Differential growth costs and nitrogen fixation in <i>Cytisus multiflorus</i> (L′Hér.) Sweet and <i>Cytisus scoparius</i> (L.) Link are mediated by sources of inorganic N. Plant Biology, 2017, 19, 742-748.	3.8	12
14	Enhanced Plant Performance in Cicer arietinum L. Due to the Addition of a Combination of Plant Growth-Promoting Bacteria. Agriculture (Switzerland), 2017, 7, 40.	3.1	10
15	Patterns of Growth Costs and Nitrogen Acquisition in Cytisus striatus (Hill) Rothm. and Cytisus balansae (Boiss.) Ball are Mediated by Sources of Inorganic N. Plants, 2016, 5, 20.	3.5	3
16	Benefits of the Symbiotic Association of Shrubby Legumes for the Rehabilitation of Degraded Soils under Mediterranean Climatic Conditions. Land Degradation and Development, 2016, 27, 395-405.	3.9	31
17	Competition and facilitation between Australian and Spanish legumes in seven Australian soils. Plant Species Biology, 2016, 31, 256-271.	1.0	12
18	Broad environmental tolerance of native root-nodule bacteria of Biserrula pelecinus indicate potential for soil fertility restoration. Plant Ecology and Diversity, 2016, 9, 299-307.	2.4	2

#	Article	IF	CITATIONS
19	Total growth and root-cluster production by legumes and proteas depends on rhizobacterial strain, host species and nitrogen level. Annals of Botany, 2016, 118, 725-732.	2.9	8
20	Source of inorganic N affects the cost of growth in a legume tree species (<i>Virgilia divaricata</i>) from the Mediterrean-type Fynbos ecosystem. Journal of Plant Ecology, 2016, 9, 752-761.	2.3	19
21	Competing Bradyrhizobia strains determine niche occupancy by two native legumes in the Iberian Peninsula. Plant Ecology, 2015, 216, 1537-1549.	1.6	9
22	Soil bacteria hold the key to root cluster formation. New Phytologist, 2015, 206, 1156-1162.	7.3	21
23	Evolution of vegetation and soil nutrients after uranium mining in Los Ratones mine (CÃ _i ceres, Spain). Isotopes in Environmental and Health Studies, 2014, 50, 257-268.	1.0	2
24	The dual symbiosis between arbuscular mycorrhiza and nitrogen fixing bacteria benefits the growth and nutrition of the woody invasive legume Acacia cyclops under nutrient limiting conditions. Plant and Soil, 2013, 366, 229-241.	3.7	38
25	Biological nitrogen fixation of Biserrula pelecinus L. under water deficit. Plant, Soil and Environment, 2012, 58, 360-366.	2.2	7
26	Arbuscular mycorrhiza maintains nodule function during external NH 4 + supply in Phaseolus vulgaris (L.). Mycorrhiza, 2012, 22, 237-245.	2.8	20
27	Transfer of 238U, 230Th, 226Ra, and 210Pb from soils to tree and shrub species in a Mediterranean area. Applied Radiation and Isotopes, 2010, 68, 1154-1159.	1.5	27
28	Arbuscular mycorrhizae affect the N and C economy of nodulated Phaseolus vulgaris (L.) during NH4+ nutrition. Soil Biology and Biochemistry, 2009, 41, 2115-2121.	8.8	30
29	Biodiversity of Root-Nodule Bacteria Associated With the Leguminous Plant Biserrula pelecinus. Soil Science, 2009, 174, 424-429.	0.9	3
30	Influence of soil texture on the distribution and availability of 238U, 230Th, and 226Ra in soils. Journal of Environmental Radioactivity, 2008, 99, 1247-1254.	1.7	40
31	The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biology and Biochemistry, 2008, 40, 1019-1027.	8.8	154
32	NH4+ Nutrition Affects the Photosynthetic and Respiratory C Sinks in the Dual Symbiosis of a Mycorrhizal Legume. Current Plant Science and Biotechnology in Agriculture, 2008, , 273-274.	0.0	0
33	Rhizobial Diversity Associated with South African Legumes. Current Plant Science and Biotechnology in Agriculture, 2008, , 121-122.	0.0	Ο
34	Nutritional and Photosynthetic Performance of Invasive and Indigenous Legumes in a Mediterranean Ecosystem. Current Plant Science and Biotechnology in Agriculture, 2008, , 137-138.	0.0	0
35	Ecology and Phytochemical Analysis of the Medicinal Legume, Sutherlandia frutescens (L.)R. Br., at Two Locations. Current Plant Science and Biotechnology in Agriculture, 2008, , 139-139.	0.0	0
36	Nutritional effects of indigenous arbuscular mycorrhizal associations on the sclerophyllous species <i>Agathosma betulina</i> . Web Ecology, 2007, 7, 77-86.	1.6	5

MarÃa A Pérez-FernÃindez

#	Article	IF	CITATIONS
37	Seed germination in response to chemicals: effect of nitrogen and pH in the media. Journal of Environmental Biology, 2006, 27, 13-20.	0.5	27
38	Simulation of germination of pioneer species along an experimental drought gradient. Journal of Environmental Biology, 2006, 27, 679-85.	0.5	8
39	Potential use of Iberian shrubby legumes and rhizobia inoculation in revegetation projects under acidic soil conditions. Applied Soil Ecology, 2005, 29, 203-208.	4.3	39
40	Screening of Soil Micro-organisms and Their Influence in the Establishment of Annual Herbaceous Species. Asian Journal of Plant Sciences, 2004, 3, 532-538.	0.4	0
41	Effect of smoke, charred wood, and nitrogenous compounds on seed germination of ten species from woodland in central-western Spain. Journal of Chemical Ecology, 2003, 29, 237-251.	1.8	85
42	Analysis of the legume-rhizobia symbiosis in shrubs from central western Spain. Journal of Applied Microbiology, 2003, 95, 1367-1374.	3.1	64
43	Nodulation and performance of exotic and native legumes in Australian soils. Australian Journal of Botany, 2003, 51, 543.	0.6	17
44	Soil fertility and herb facilitation mediated by Retama sphaerocarpa. Journal of Vegetation Science, 2003, 14, 807.	2.2	11
45	Germination of seven exotic weeds and seven native speciesin south-western Australia under steady and fluctuating water supply. Acta Oecologica, 2000, 21, 323-336.	1.1	49
46	Survival and growth of native and exotic composites in response to a nutrient gradient. Plant Ecology, 1999, 145, 125-132.	1.6	62
47	Seedling growth response to added nutrients depends on seed size in three woody genera. Journal of Ecology, 1998, 86, 624-632.	4.0	79