
Kristiina M Mäkinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1549240/publications.pdf Version: 2024-02-01

KDISTIINA M MÃØINEN

#	Article	IF	CITATIONS
1	A novel function for a ubiquitous plant enzyme pectin methylesterase: the host-cell receptor for the tobacco mosaic virus movement protein. FEBS Letters, 1999, 461, 223-228.	1.3	175
2	Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. Virology, 2011, 411, 374-382.	1.1	170
3	Molecular and cellular mechanisms underlying potyvirus infection. Journal of General Virology, 2014, 95, 1415-1429.	1.3	141
4	Molecular insights into the function of the viral <scp>RNA</scp> silencing suppressor <scp>HCP</scp> ro. Plant Journal, 2016, 85, 30-45.	2.8	137
5	HSP70 and Its Cochaperone CPIP Promote Potyvirus Infection in <i>Nicotiana benthamiana</i> by Regulating Viral Coat Protein Functions. Plant Cell, 2010, 22, 523-535.	3.1	125
6	Phosphorylation of the Potyvirus Capsid Protein by Protein Kinase CK2 and Its Relevance for Virus Infection [W]. Plant Cell, 2003, 15, 2124-2139.	3.1	119
7	Potyviral VPg Enhances Viral RNA Translation and Inhibits Reporter mRNA Translation <i>In Planta</i> . Journal of Virology, 2011, 85, 9210-9221.	1.5	105
8	An Unusual Structure at One End of Potato Potyvirus Particles. Journal of Molecular Biology, 2006, 357, 1-8.	2.0	90
9	Coat proteins, host factors and plant viral replication. Current Opinion in Virology, 2012, 2, 712-718.	2.6	86
10	Phosphorylation Down-regulates the RNA Binding Function of the Coat Protein of Potato Virus A. Journal of Biological Chemistry, 2001, 276, 13530-13540.	1.6	79
11	Uridylylation of the Potyvirus VPg by Viral Replicase NIb Correlates with the Nucleotide Binding Capacity of VPg. Journal of Biological Chemistry, 2004, 279, 38103-38110.	1.6	76
12	Formation of Potato Virus A-Induced RNA Granules and Viral Translation Are Interrelated Processes Required for Optimal Virus Accumulation. PLoS Pathogens, 2015, 11, e1005314.	2.1	68
13	Structural Flexibility Allows the Functional Diversity of Potyvirus Genome-Linked Protein VPg. Journal of Virology, 2011, 85, 2449-2457.	1.5	67
14	Potato virus A genome-linked protein VPg is an intrinsically disordered molten globule-like protein with a hydrophobic core. Virology, 2008, 377, 280-288.	1.1	65
15	The Putative Replicase of the Cocksfoot Mottle Sobemovirus Is Translated as a Part of the Polyprotein by -1 Ribosomal Frameshift. Virology, 1995, 207, 566-571.	1.1	58
16	Detection of the Potyviral Genome-Linked Protein VPg in Virions and Its Phosphorylation by Host Kinases. Journal of Virology, 2002, 76, 12703-12711.	1.5	58
17	Cylindrical inclusion protein of potato virus A is associated with a subpopulation of particles isolated from infected plants. Journal of General Virology, 2008, 89, 829-838.	1.3	58
18	Ribosomal Protein PO Promotes <i>Potato Virus A</i> Infection and Functions in Viral Translation Together with VPg and elF(iso)4E. Journal of Virology, 2013, 87, 4302-4312.	1.5	57

Kristiina M MÃ**r**inen

#	Article	IF	CITATIONS
19	Three heterologous proteins simultaneously expressed from a chimeric potyvirus: Infectivity, stability and the correlation of genome and virion lengths. Virus Research, 2008, 135, 282-291.	1.1	53
20	A novel function for a ubiquitous plant enzyme pectin methylesterase: The enhancer of RNA silencing. FEBS Letters, 2006, 580, 3872-3878.	1.3	51
21	Virus-specific capping of tobacco mosaic virus RNA: methylation of GTP prior to formation of covalent complex p126-m7GMP. FEBS Letters, 1999, 455, 45-48.	1.3	49
22	Production of a recombinant industrial protein using barley cell cultures. Protein Expression and Purification, 2008, 59, 274-281.	0.6	49
23	Infectious in vitro transcripts from cloned cDNA of the potato A potyvirus. Virus Research, 1996, 40, 135-140.	1.1	47
24	Identification of the genome-linked protein in virions of Potato virus A, with comparison to other members in genus Potyvirus. Virus Research, 2001, 73, 103-112.	1.1	47
25	ICTV Virus Taxonomy Profile: Potyviridae 2022. Journal of General Virology, 2022, 103, .	1.3	44
26	Role of the leader sequence in tobacco pectin methylesterase secretion. FEBS Letters, 2006, 580, 3329-3334.	1.3	43
27	Production of a recombinant fullâ€length collagen type l αâ€l and of a 45â€kDa collagen type l αâ€l fragment i barley seeds. Plant Biotechnology Journal, 2009, 7, 657-672.	n 4.1	43
28	Coat Protein Regulation by CK2, CPIP, HSP70, and CHIP Is Required for Potato Virus A Replication and Coat Protein Accumulation. Journal of Virology, 2017, 91, .	1.5	41
29	Plant RNA Regulatory Network and RNA Granules in Virus Infection. Frontiers in Plant Science, 2017, 8, 2093.	1.7	41
30	Intracellular coordination of potyviral RNA functions in infection. Frontiers in Plant Science, 2014, 5, 110.	1.7	38
31	Protein composition of 6K2â€induced membrane structures formed during <i>Potato virus A</i> infection. Molecular Plant Pathology, 2016, 17, 943-958.	2.0	37
32	Complementation of the Movement-Deficient Mutations in Potato Virus X: Potyvirus Coat Protein Mediates Cell-to-Cell Trafficking of C-Terminal Truncation but Not Deletion Mutant of Potexvirus Coat Protein. Virology, 2000, 270, 31-42.	1.1	34
33	Dysfunctionality of a tobacco mosaic virus movement protein mutant mimicking threonine 104 phosphorylation. Journal of General Virology, 2003, 84, 727-732.	1.3	34
34	The significance of methionine cycle enzymes in plant virus infections. Current Opinion in Plant Biology, 2019, 50, 67-75.	3.5	34
35	Renilla luciferase-based quantitation of Potato virus A infection initiated with Agrobacterium infiltration of N. benthamiana leaves. Journal of Virological Methods, 2010, 164, 101-110.	1.0	32
36	General Strategy for Ordered Noncovalent Protein Assembly on Well-Defined Nanoscaffolds. Biomacromolecules, 2013, 14, 4351-4359.	2.6	29

#	Article	IF	CITATIONS
37	Cotranslational Coat Protein-Mediated Inhibition of Potyviral RNA Translation. Journal of Virology, 2015, 89, 4237-4248.	1.5	28

Characterization of VPg and the polyprotein processing of Cocksfoot mottle virus (genus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{50}{28}$ 702 Td

39	Inhibition of Angiotensin Converting Enzyme I Caused by Autolysis of Potato Proteins by Enzymatic Activities Confined to Different Parts of the Potato Tuber. Journal of Agricultural and Food Chemistry, 2008, 56, 9875-9883.	2.4	25
40	The potyviral silencing suppressor HCPro recruits and employs host ARGONAUTE1 in pro-viral functions. PLoS Pathogens, 2020, 16, e1008965.	2.1	25
41	A potyvirus-based gene vector allows producing active human S-COMT andÂanimal GFP, butÂnot human sorcin, inÂvector-infected plants. Biochimie, 2006, 88, 505-513.	1.3	23
42	Insights into the Functions of elF4E-Binding Motif of VPg in Potato Virus A Infection. Viruses, 2020, 12, 197.	1.5	23
43	Purification of viral genome-linked protein VPg from potato virus A-infected plants reveals several post-translationally modified forms of the protein. Journal of General Virology, 2008, 89, 1509-1518.	1.3	22
44	Sesbania Mosaic Virus (SeMV) Infectious Clone: Possible Mechanism of 3′ and 5′ End Repair and Role of Polyprotein Processing in Viral Replication. PLoS ONE, 2012, 7, e31190.	1.1	22
45	Stability of native and cross-linked crystalline glucose isomerase. , 1999, 64, 377-380.		21
46	Abiotic stress responses promote <i>Potato virus A</i> infection in <i>Nicotiana benthamiana</i> . Molecular Plant Pathology, 2012, 13, 775-784.	2.0	20
47	Disruption of the methionine cycle and reduced cellular gluthathione levels underlie potex–potyvirus synergism in <i>Nicotiana benthamiana</i> . Molecular Plant Pathology, 2018, 19, 1820-1835.	2.0	20
48	Association of host protein VARICOSE with HCPro within a multiprotein complex is crucial for RNA silencing suppression, translation, encapsidation and systemic spread of potato virus A infection. PLoS Pathogens, 2020, 16, e1008956.	2.1	19
49	Plant susceptibility genes as a source for potyvirus resistance. Annals of Applied Biology, 2020, 176, 122-129.	1.3	17
50	Regulation of â^'1 ribosomal frameshifting directed by Cocksfoot mottle sobemovirus genome. FEBS Journal, 2000, 267, 3523-3529.	0.2	16
51	Nucleotide sequence of the 3'-terminal region of potato virus A RNA. Virus Research, 1992, 23, 99-105.	1.1	15
52	Identification of genes encoding for the cocksfoot mottle virus proteins. Archives of Virology, 1999, 144, 1557-1567.	0.9	15
53	Functional regulation of PVBV Nuclear Inclusion protein-a protease activity upon interaction with Viral Protein genome-linked and phosphorylation. Virology, 2012, 422, 254-264.	1.1	15
54	Interaction of a potyviral VPg with anionic phospholipid vesicles. Virology, 2009, 395, 114-120.	1.1	14

Kristiina M MÃ**r**inen

#	Article	IF	CITATIONS
55	Toward the Reconstitution of a Two-Enzyme Cascade for Resveratrol Synthesis on Potyvirus Particles. Frontiers in Plant Science, 2016, 7, 89.	1.7	14
56	Ribosome profiles and riboproteomes of healthy and Potato virus A―and <i>Agrobacterium</i> â€infected <i>Nicotiana benthamiana</i> plants. Molecular Plant Pathology, 2019, 20, 392-409.	2.0	13
57	Testing of internal translation initiation via dicistronic constructs in yeast is complicated by production of extraneous transcripts. Gene, 2007, 391, 275-284.	1.0	10
58	Factors affecting translation at the programmed -1 ribosomal frameshifting site of Cocksfoot mottle virus RNA in vivo. Nucleic Acids Research, 2005, 33, 2239-2247.	6.5	8
59	Interplay of HCPro and CP in the Regulation of Potato Virus A RNA Expression and Encapsidation. Viruses, 2022, 14, 1233.	1.5	8
60	One-step Purification of Twin-Strep-tagged Proteins and Their Complexes on Strep-Tactin Resin Cross-linked With Bis(sulfosuccinimidyl) Suberate (BS3). Journal of Visualized Experiments, 2014, , .	0.2	7
61	Dynamics of Protein Accumulation from the 3′ End of Viral RNA Are Different from Those in the Rest of the Genome in Potato Virus A Infection. Journal of Virology, 2019, 93, .	1.5	7
62	Detection of cocksfoot mottle virus particles and RNA in oat plants by immunological, biotechnical and electronmicroscopical techniques. Archives of Phytopathology and Plant Protection, 1997, 30, 473-485.	0.6	5
63	Phosphorylation Analysis of Plant Viral Proteins. Methods in Molecular Biology, 2008, 451, 339-359.	0.4	3
64	Plant biotechnology for deeper understanding, wider use and further development of agricultural and Food Science, 2008, 17, 307.	0.3	3
65	Introduction to Special Issue of Molecular Plant Pathology ―"Extracellular and intracellular perception of plant viruses― Molecular Plant Pathology, 2019, 20, 1183-1184.	2.0	1
66	Editorial: Plant Viruses, Volume II: Molecular Plant Virus Epidemiology and Its Management. Frontiers in Microbiology, 2021, 12, 756807.	1.5	1
67	The RISC component VIG is a target for dsRNA-independent protein kinase activity in Drosophila S2 cells. Journal of Rnai and Gene Silencing, 2005, 1, 12-20.	1.2	1
68	The effect of glycophorin A on oxidation of globoside by galactose oxidase. Glycoconjugate Journal, 1990, 7, 247-253.	1.4	0
69	Editorial: Plant Viruses, Volume I: Detection Methods, Genetic Diversity, and Evolution. Frontiers in Microbiology, 2021, 12, 793071.	1.5	0