Zhifeng Ren

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1548993/zhifeng-ren-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

39,780 361 193 99 h-index g-index citations papers 46,375 7.66 11.5 375 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
361	Recent progress on cubic boron arsenide with ultrahigh thermal conductivity. <i>Journal of Applied Physics</i> , 2022 , 131, 055102	2.5	O
360	Efficient Alkaline Water/Seawater Hydrogen Evolution by a Nanorod-nanoparticle-structured Ni-MoN Catalyst with Fast Water-dissociation Kinetics <i>Advanced Materials</i> , 2022 , e2201774	24	16
359	High-performance seawater oxidation by a homogeneous multimetallic layered double hydroxide electrocatalyst <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2202382119	11.5	8
358	Mobility enhancement in heavily doped semiconductors via electron cloaking <i>Nature Communications</i> , 2022 , 13, 2482	17.4	1
357	Crystallographic design for half-Heuslers with low lattice thermal conductivity. <i>Materials Today Physics</i> , 2022 , 25, 100704	8	1
356	The challenge of tuning the ratio of lattice/total thermal conductivity toward conversion efficiency vs power density. <i>Applied Physics Letters</i> , 2021 , 119, 180501	3.4	3
355	Engineering In-Plane Nickel Phosphide Heterointerfaces with Interfacial sp H?P Hybridization for Highly Efficient and Durable Hydrogen Evolution at 2 A cm. <i>Small</i> , 2021 , e2105642	11	9
354	Thermoelectric performance improvement of p-type Mg3Sb2-based materials by Zn and Ag co-doping. <i>Materials Today Physics</i> , 2021 , 21, 100564	8	7
353	Interfacial Superconductivity Achieved in Parent AEFeAs (AE = Ca, Sr, Ba) by a Simple and Realistic Annealing Route. <i>Nano Letters</i> , 2021 , 21, 2191-2198	11.5	1
352	Hybrid Transition-Metal Oxide and Nitride@N-Doped Reduced Graphene Oxide Electrodes for High-Performance, Flexible, and All-Solid-State Supercapacitors. <i>Chemistry - A European Journal</i> , 2021 , 27, 5761-5768	4.8	2
351	Influence of cation size on the thermoelectric behavior of salt-doped organic nanocomposite thin films. <i>Applied Physics Letters</i> , 2021 , 118, 151904	3.4	1
350	Recent advances in flexible thermoelectrics. <i>Applied Physics Letters</i> , 2021 , 118, 170503	3.4	3
349	Electronic structure of cubic boron arsenide probed by scanning tunneling spectroscopy. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 31LT01	3	1
348	Boron-modified cobalt iron layered double hydroxides for high efficiency seawater oxidation. <i>Nano Energy</i> , 2021 , 83, 105838	17.1	44
347	Ultrahigh Thermoelectric Performance in Environmentally Friendly SnTe Achieved through Stress-Induced Lotus-Seedpod-Like Grain Boundaries. <i>Advanced Functional Materials</i> , 2021 , 31, 2101554	4 ^{15.6}	21
346	Rational design of oxygen evolution reaction catalysts for seawater electrolysis. <i>Trends in Chemistry</i> , 2021 , 3, 485-498	14.8	21
345	Defect charging and resonant levels in half-Heusler Nb1II FeSb. <i>Materials Today Physics</i> , 2021 , 16, 1002	278	3

(2020-2021)

344	Heterogeneous Bimetallic Phosphide Ni 2 P-Fe 2 P as an Efficient Bifunctional Catalyst for Water/Seawater Splitting. <i>Advanced Functional Materials</i> , 2021 , 31, 2006484	15.6	134
343	Thermoelectric cooling materials. <i>Nature Materials</i> , 2021 , 20, 454-461	27	97
342	Pickering emulsion stabilized by organoclay and intermediately hydrophobic nanosilica for high-temperature conditions. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 610, 125694	5.1	6
341	CALPHAD as a powerful technique for design and fabrication of thermoelectric materials. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 6634-6649	13	6
340	High thermoelectric performance at room temperature of n-type Mg3Bi2-based materials by Se doping. <i>Journal of Magnesium and Alloys</i> , 2021 ,	8.8	2
339	Towards tellurium-free thermoelectric modules for power generation from low-grade heat. <i>Nature Communications</i> , 2021 , 12, 1121	17.4	36
338	Effects of Impurities on the Thermal and Electrical Transport Properties of Cubic Boron Arsenide. <i>Chemistry of Materials</i> , 2021 , 33, 6974-6982	9.6	4
337	Electrochemical Insight into NaxCoO2 for the Oxygen Evolution Reaction and the Oxygen Reduction Reaction. <i>Chemistry of Materials</i> , 2021 , 33, 6299-6310	9.6	4
336	Development of a high-temperature (295¶00 K) Seebeck coefficient Standard Reference Material. Journal of Materials Research, 2021 , 36, 3339	2.5	O
335	Tuning Metal Elements in Open Frameworks for Efficient Oxygen Evolution and Oxygen Reduction Reaction Catalysts. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 42715-42723	9.5	5
334	Rational design of core-shell-structured CoPx@FeOOH for efficient seawater electrolysis. <i>Applied Catalysis B: Environmental</i> , 2021 , 294, 120256	21.8	33
333	Bioinspired Redox Mediator in Lithium Dxygen Batteries. ACS Catalysis, 2021, 11, 1833-1840	13.1	4
332	VS4 with a chain crystal structure used as an intercalation cathode for aqueous Zn-ion batteries. Journal of Materials Chemistry A, 2020 , 8, 10761-10766	13	35
331	Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. <i>Energy and Environmental Science</i> , 2020 , 13, 3439-3446	35.4	173
330	Atypical Oxygen-Bearing Copper Boosts Ethylene Selectivity toward Electrocatalytic CO Reduction. Journal of the American Chemical Society, 2020 , 142, 11417-11427	16.4	99
329	Titanium Doping to Enhance Thermoelectric Performance of 19-Electron VCoSb Half-Heusler Compounds with Vanadium Vacancies. <i>Annalen Der Physik</i> , 2020 , 532, 1900440	2.6	6
328	Enhanced thermoelectric performance in polycrystalline N-type Pr-doped SnSe by hot forging. <i>Acta Materialia</i> , 2020 , 190, 1-7	8.4	13
327	Recent Advances in Self-Supported Layered Double Hydroxides for Oxygen Evolution Reaction. <i>Research</i> , 2020 , 2020, 3976278	7.8	33

326	Laser-Induced Silicon Oxide for Anode-Free Lithium Metal Batteries. Advanced Materials, 2020, 32, e200	28 50	35
325	Bi0.5Sb1.5Te3-based films for flexible thermoelectric devices. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 4552-4561	13	27
324	Ultralow thermal conductivity from transverse acoustic phonon suppression in distorted crystalline HMgAgSb. <i>Nature Communications</i> , 2020 , 11, 942	17.4	26
323	Achieving high-performance p-type SmMg2Bi2 thermoelectric materials through band engineering and alloying effects. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 15760-15766	13	9
322	High-Performance Ag-Modified BiSbTe Films for the Flexible Thermoelectric Generator. <i>ACS Applied Materials & Description of the Flexible Thermoelectric Generator</i> . <i>ACS Applied Materials & Description of the Flexible Thermoelectric Generator</i> . <i>ACS Applied Materials & Description of the Flexible Thermoelectric Generator</i> . <i>ACS Applied Materials & Description of the Flexible Thermoelectric Generator</i> . <i>ACS Applied Materials & Description of the Flexible Thermoelectric Generator</i> . <i>ACS Applied Materials & Description of the Flexible Thermoelectric Generator</i> . <i>ACS Applied Materials & Description of the Flexible Thermoelectric Generator</i> . <i>ACS Applied Materials & Description of the Flexible Thermoelectric Generator</i> .	9.5	33
321	In Situ Growth of Ru Nanoparticles on (Fe,Ni)(OH)2 to Boost Hydrogen Evolution Activity at High Current Density in Alkaline Media. <i>Small Methods</i> , 2020 , 4, 1900796	12.8	36
320	Gram-scale bottom-up flash graphene synthesis. <i>Nature</i> , 2020 , 577, 647-651	50.4	201
319	Achieving high room-temperature thermoelectric performance in cubic AgCuTe. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 4790-4799	13	28
318	Phase Inversion of Pickering Emulsions by Electrolyte for Potential Reversible Water-in-Oil Drilling Fluids. <i>Energy & Discourt Energy & D</i>	4.1	6
317	Defect Engineering for Realizing p-Type AgBiSe2 with a Promising Thermoelectric Performance. <i>Chemistry of Materials</i> , 2020 , 32, 3528-3536	9.6	7
316	Facile synthesis of nanoparticle-stacked tungsten-doped nickel iron layered double hydroxide nanosheets for boosting oxygen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 8096-810	3 ¹³	30
315	Optical properties of cubic boron arsenide. <i>Applied Physics Letters</i> , 2020 , 116, 141903	3.4	6
314	N-Type MgSb Bi Alloys as Promising Thermoelectric Materials. <i>Research</i> , 2020 , 2020, 1219461	7.8	10
313	Thermoelectric Properties of Zintl Phase YbMg2Sb2. <i>Chemistry of Materials</i> , 2020 , 32, 776-784	9.6	21
312	Quasi-Solid-State Li D 2 Batteries with Laser-Induced Graphene Cathode Catalysts. <i>ACS Applied Energy Materials</i> , 2020 , 3, 1702-1709	6.1	11
311	Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. <i>Science</i> , 2020 , 367, 555-559	33.3	90
310	Robust Hydrogen-Evolving Electrocatalyst from Heterogeneous Molybdenum Disulfide-Based Catalyst. <i>ACS Catalysis</i> , 2020 , 10, 1511-1519	13.1	52
309	Smart Pickering water-in-oil emulsion by manipulating interactions between nanoparticles and surfactant as potential oil-based drilling fluid. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2020 , 586, 124246	5.1	17

(2019-2020)

308	A double four-point probe method for reliable measurement of energy conversion efficiency of thermoelectric materials. <i>Energy</i> , 2020 , 191, 116599	7.9	5	
307	Suppressed phase transition and enhanced thermoelectric performance in iodine-doped AgCuTe. <i>Nano Energy</i> , 2020 , 77, 105297	17.1	8	
306	N-type Mg3Sb2-Bi with improved thermal stability for thermoelectric power generation. <i>Acta Materialia</i> , 2020 , 201, 572-579	8.4	14	
305	Pressure-Dependent Behavior of Defect-Modulated Band Structure in Boron Arsenide. <i>Advanced Materials</i> , 2020 , 32, e2001942	24	9	
304	Half-Heusler thermoelectric materials: NMR studies. <i>Journal of Applied Physics</i> , 2020 , 128, 055106	2.5	3	
303	Hydrogen Generation from Seawater Electrolysis over a Sandwich-like NiCoN NixP NiCoN Microsheet Array Catalyst. <i>ACS Energy Letters</i> , 2020 , 5, 2681-2689	20.1	71	
302	CO to Formic Acid Using Cu-Sn on Laser-Induced Graphene. <i>ACS Applied Materials & Company Comp</i>	9.5	17	
301	Salt doping to improve thermoelectric power factor of organic nanocomposite thin films <i>RSC Advances</i> , 2020 , 10, 11800-11807	3.7	8	
300	Enhanced Thermoelectric Performance in N-Type Mg3.2Sb1.5Bi0.5 by La or Ce Doping into Mg. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901391	6.4	8	
299	Realizing a Rechargeable High-Performance Cu I In Battery by Adjusting the Solubility of Cu2+. <i>Advanced Functional Materials</i> , 2019 , 29, 1905979	15.6	29	
298	Effect of boron sources on the growth of boron arsenide single crystals by chemical vapor transport. <i>Applied Physics Letters</i> , 2019 , 115, 092103	3.4	6	
297	Interactions between amphiphilic Janus nanosheets and a nonionic polymer in aqueous and biphasic systems. <i>Soft Matter</i> , 2019 , 15, 7472-7478	3.6	7	
296	The effect of carbon quantum dots on the electrocatalytic hydrogen evolution reaction of manganesellickel phosphide nanosheets. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 21488-21495	13	27	
295	Large reduction of thermal conductivity leading to enhanced thermoelectric performance in p-type Mg3Bi2NbMg2Bi2 solid solutions. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 434-440	7.1	20	
294	Realizing high conversion efficiency of Mg3Sb2-based thermoelectric materials. <i>Journal of Power Sources</i> , 2019 , 414, 393-400	8.9	47	
293	Zintl-phase EuZnSb: A promising thermoelectric material with ultralow thermal conductivity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2831-2836	11.5	59	
292	Electrostatic-attraction-induced high internal phase emulsion for large-scale synthesis of amphiphilic Janus nanosheets. <i>Chemical Communications</i> , 2019 , 55, 1318-1321	5.8	15	
291	Understanding the asymmetrical thermoelectric performance for discovering promising thermoelectric materials. <i>Science Advances</i> , 2019 , 5, eaav5813	14.3	27	

290	High-pressure phases of boron arsenide with potential high thermal conductivity. <i>Physical Review B</i> , 2019 , 99,	3.3	11
289	Manipulation of Ni Interstitials for Realizing Large Power Factor in TiNiSn-Based Materials. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900166	6.4	23
288	Mechanical properties of boron arsenide single crystal. <i>Applied Physics Letters</i> , 2019 , 114, 131903	3.4	15
287	Electrochemical Performance of Free-Standing and Flexible Graphene and TiO Composites with Different Conductive Polymers as Electrodes for Supercapacitors. <i>Chemistry - A European Journal</i> , 2019 , 25, 7903-7911	4.8	18
286	Visible-light driven CO2 reduction coupled with water oxidation on Cl-doped Cu2O nanorods. <i>Nano Energy</i> , 2019 , 60, 576-582	17.1	71
285	High Thermal Conductivity in Boron Arsenide: From Prediction to Reality. <i>Angewandte Chemie</i> , 2019 , 131, 5882-5889	3.6	6
284	New Way to Synthesize Robust and Porous NiFe Layered Double Hydroxide for Efficient Electrocatalytic Oxygen Evolution. <i>ACS Applied Materials & Double Hydroxide for Efficient Materials & Double Hydroxide for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Materials & Double Hydroxide for Efficient Electrocatalytic Oxygen Evolution. <i>ACS Applied Materials & Double Hydroxide for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Materials & Double Hydroxide for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Materials & Double Hydroxide for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Materials & Double Hydroxide for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Materials & Double Hydroxide for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Materials & Double Hydroxide for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Materials & Double Hydroxide for Electrocatalytic Oxygen Evolution Electrocatalytic Oxygen Evolution Electrocatalytic Oxygen Electrocatalytic Elect</i></i>	9.5	10
283	Realization of higher thermoelectric performance by dynamic doping of copper in n-type PbTe. <i>Energy and Environmental Science</i> , 2019 , 12, 3089-3098	35.4	73
282	Li-Breathing Air Batteries Catalyzed by MnNiFe/Laser-Induced Graphene Catalysts. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1901035	4.6	15
281	High thermoelectric cooling performance of n-type MgBi-based materials. <i>Science</i> , 2019 , 365, 495-498	33.3	240
281 280	High thermoelectric cooling performance of n-type MgBi-based materials. <i>Science</i> , 2019 , 365, 495-498 Sustainable Synthesis of Bright Green Fluorescent Nitrogen-Doped Carbon Quantum Dots from Alkali Lignin. <i>ChemSusChem</i> , 2019 , 12, 4202-4210	33·3 8·3	240 46
	Sustainable Synthesis of Bright Green Fluorescent Nitrogen-Doped Carbon Quantum Dots from		
280	Sustainable Synthesis of Bright Green Fluorescent Nitrogen-Doped Carbon Quantum Dots from Alkali Lignin. <i>ChemSusChem</i> , 2019 , 12, 4202-4210 A universal synthesis strategy to make metal nitride electrocatalysts for hydrogen evolution	8.3	46
280 279	Sustainable Synthesis of Bright Green Fluorescent Nitrogen-Doped Carbon Quantum Dots from Alkali Lignin. <i>ChemSusChem</i> , 2019 , 12, 4202-4210 A universal synthesis strategy to make metal nitride electrocatalysts for hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 19728-19732 Improved Thermoelectric Performance of Eco-Friendly EFeSi2BiGe Nanocomposite via Synergistic Hierarchical Structuring, Phase Percolation, and Selective Doping. <i>Advanced Functional Materials</i> ,	8.3	46
280 279 278	Sustainable Synthesis of Bright Green Fluorescent Nitrogen-Doped Carbon Quantum Dots from Alkali Lignin. <i>ChemSusChem</i> , 2019 , 12, 4202-4210 A universal synthesis strategy to make metal nitride electrocatalysts for hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 19728-19732 Improved Thermoelectric Performance of Eco-Friendly FeSi2BiGe Nanocomposite via Synergistic Hierarchical Structuring, Phase Percolation, and Selective Doping. <i>Advanced Functional Materials</i> , 2019 , 29, 1903157 Thermal Expansion Coefficient and Lattice Anharmonicity of Cubic Boron Arsenide. <i>Physical Review</i>	8.3 13 15.6	46 67 17
280 279 278 277	Sustainable Synthesis of Bright Green Fluorescent Nitrogen-Doped Carbon Quantum Dots from Alkali Lignin. <i>ChemSusChem</i> , 2019 , 12, 4202-4210 A universal synthesis strategy to make metal nitride electrocatalysts for hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 19728-19732 Improved Thermoelectric Performance of Eco-Friendly FeSi2BiGe Nanocomposite via Synergistic Hierarchical Structuring, Phase Percolation, and Selective Doping. <i>Advanced Functional Materials</i> , 2019 , 29, 1903157 Thermal Expansion Coefficient and Lattice Anharmonicity of Cubic Boron Arsenide. <i>Physical Review Applied</i> , 2019 , 11, Giant Poisson Effect for Wrinkle-Free Stretchable Transparent Electrodes. <i>Advanced Materials</i> ,	8.3 13 15.6 4.3	46 67 17
280 279 278 277 276	Sustainable Synthesis of Bright Green Fluorescent Nitrogen-Doped Carbon Quantum Dots from Alkali Lignin. <i>ChemSusChem</i> , 2019 , 12, 4202-4210 A universal synthesis strategy to make metal nitride electrocatalysts for hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 19728-19732 Improved Thermoelectric Performance of Eco-Friendly IFeSi2BiGe Nanocomposite via Synergistic Hierarchical Structuring, Phase Percolation, and Selective Doping. <i>Advanced Functional Materials</i> , 2019 , 29, 1903157 Thermal Expansion Coefficient and Lattice Anharmonicity of Cubic Boron Arsenide. <i>Physical Review Applied</i> , 2019 , 11, Giant PoissonN Effect for Wrinkle-Free Stretchable Transparent Electrodes. <i>Advanced Materials</i> , 2019 , 31, e1902955 Thermodynamic calculation and its experimental correlation with the growth process of boron	8.3 13 15.6 4.3	46 67 17

(2018-2019)

272	Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. <i>Nature Communications</i> , 2019 , 10, 5106	17.4	318	
271	High Thermal Conductivity in Boron Arsenide: From Prediction to Reality. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5824-5831	16.4	26	
270	Enhancement of thermoelectric performance across the topological phase transition in dense lead selenide. <i>Nature Materials</i> , 2019 , 18, 1321-1326	27	47	
269	Photothermal Heating-Induced Localized Structural Disruption in a Poly-Etaprolactone Nanocarrier System for Controlled Drug Delivery ACS Applied Bio Materials, 2019, 2, 464-469	4.1	4	
268	Flexible Electronics: Stretchable Electrodes and Their Future. <i>Advanced Functional Materials</i> , 2019 , 29, 1805924	15.6	305	
267	Thermoelectric properties of silicon and recycled silicon sawing waste. <i>Journal of Materiomics</i> , 2019 , 5, 15-33	6.7	15	
266	Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. <i>Nature Communications</i> , 2019 , 10, 270	17.4	155	
265	Highly Efficient Hydrogen Evolution from a Mesoporous Hybrid of Nickel Phosphide Nanoparticles Anchored on Cobalt Phosphosulfide/Phosphide Nanosheet Arrays. <i>Small</i> , 2019 , 15, e1804272	11	65	
264	Nickel phosphide based hydrogen producing catalyst with low overpotential and stability at high current density. <i>Electrochimica Acta</i> , 2019 , 299, 756-761	6.7	27	
263	Laser-Induced Graphene Hybrid Catalysts for Rechargeable Zn-Air Batteries. <i>ACS Applied Energy Materials</i> , 2019 , 2, 1460-1468	6.1	36	
262	Freestanding RGOIIo3O4PPy Composite Films as Electrodes for Supercapacitors. <i>Energy Technology</i> , 2019 , 7, 1800606	3.5	12	
261	Improved Thermoelectric Performance of Tellurium by Alloying with a Small Concentration of Selenium to Decrease Lattice Thermal Conductivity. <i>ACS Applied Materials & Decrease Lattice</i> 11, 511-516	9.5	5	
260	Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance. <i>Energy and Environmental Science</i> , 2018 , 11, 933-940	35.4	110	
259	Poly(sodium 4-styrenesulfonate) Stabilized Janus Nanosheets in Brine with Retained Amphiphilicity. <i>Langmuir</i> , 2018 , 34, 3694-3700	4	13	
258	Nano-microstructural control of phonon engineering for thermoelectric energy harvesting. <i>MRS Bulletin</i> , 2018 , 43, 181-186	3.2	80	
257	Study on anisotropy of n-type Mg3Sb2-based thermoelectric materials. <i>Applied Physics Letters</i> , 2018 , 112, 092103	3.4	22	
256	Amorphous NiFe layered double hydroxide nanosheets decorated on 3D nickel phosphide nanoarrays: a hierarchical corelhell electrocatalyst for efficient oxygen evolution. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13619-13623	13	105	
255	Oxidized Laser-Induced Graphene for Efficient Oxygen Electrocatalysis. <i>Advanced Materials</i> , 2018 , 30, e1707319	24	63	

254	Routes for high-performance thermoelectric materials. <i>Materials Today</i> , 2018 , 21, 974-988	21.8	187
253	Highly efficient hydrogen evolution by self-standing nickel phosphide-based hybrid nanosheet arrays electrocatalyst. <i>Materials Today Physics</i> , 2018 , 4, 1-6	8	52
252	Trimetallic NiFeMo for Overall Electrochemical Water Splitting with a Low Cell Voltage. <i>ACS Energy Letters</i> , 2018 , 3, 546-554	20.1	120
251	In Situ Synthesis of Efficient Water Oxidation Catalysts in Laser-Induced Graphene. <i>ACS Energy Letters</i> , 2018 , 3, 677-683	20.1	64
250	Robust and selective electrochemical reduction of CO2: the case of integrated 3D TiO2@MoS2 architectures and TiB bonding effects. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4706-4713	13	49
249	Seeded growth of boron arsenide single crystals with high thermal conductivity. <i>Applied Physics Letters</i> , 2018 , 112, 031903	3.4	31
248	Significant Role of Mg Stoichiometry in Designing High Thermoelectric Performance for Mg(Sb,Bi)-Based n-Type Zintls. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1910-1915	16.4	82
247	Recent progress towards high performance of tin chalcogenide thermoelectric materials. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 2432-2448	13	71
246	Unusual consequences of donor and acceptor doping on the thermoelectric properties of the MgAg0.97Sb0.99 alloy. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 2600-2611	13	4
245	Ultrahigh Power Factor in Thermoelectric System NbMFeSb (M = Hf, Zr, and Ti). <i>Advanced Science</i> , 2018 , 5, 1800278	13.6	31
244	Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers. <i>Nature Communications</i> , 2018 , 9, 1721	17.4	77
243	Bio-derived three-dimensional hierarchical carbon-graphene-TiO as electrode for supercapacitors. <i>Scientific Reports</i> , 2018 , 8, 4412	4.9	19
242	Electrochemical CO2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene. <i>Advanced Energy Materials</i> , 2018 , 8, 1703487	21.8	277
241	Self-compensation induced vacancies for significant phonon scattering in InSb. <i>Nano Energy</i> , 2018 , 48, 189-196	17.1	23
240	High thermoelectric performance of ⊞MgAgSb for power generation. <i>Energy and Environmental Science</i> , 2018 , 11, 23-44	35.4	94
239	Synthesis of graphene-based amphiphilic Janus nanosheets via manipulation of hydrogen bonding. <i>Carbon</i> , 2018 , 126, 105-110	10.4	27
238	The Effects of Excess Co on the Phase Composition and Thermoelectric Properties of Half-Heusler NbCoSb. <i>Materials</i> , 2018 , 11,	3.5	5
237	Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5332-5337	11.5	130

(2017-2018)

236	Ternary Ni2(1-x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density. <i>Nano Energy</i> , 2018 , 53, 492-500	17.1	148
235	Achieving Self-Stiffening and Laser Healing by Interconnecting Graphene Oxide Sheets with Amine-Functionalized Ovalbumin. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800932	4.6	4
234	Native defects and impurity band behavior in half-Heusler thermoelectric NbFeSb. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 21960-21967	3.6	6
233	A Metamaterial-Plasmonic Scheme Based on a Random Metallic Network for Controlling Thermal Emission. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2018 , 215, 1800206	1.6	1
232	Proton irradiation effect on thermoelectric properties of nanostructured n-type half-Heusler Hf0.25Zr0.75NiSn0.99Sb0.01. <i>Applied Physics Letters</i> , 2018 , 112, 243902	3.4	4
231	Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency. <i>Nature Communications</i> , 2018 , 9, 2497	17.4	154
230	Multi-scale study of the deformation mechanisms of thermoelectric p-type half-Heusler Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2. <i>Journal of Applied Physics</i> , 2018 , 124, 175104	2.5	
229	Impurity-derived p-type conductivity in cubic boron arsenide. <i>Applied Physics Letters</i> , 2018 , 113, 251902	3.4	24
228	Advances in thermoelectrics. Advances in Physics, 2018, 67, 69-147	18.4	225
227	Power Generation from Nanostructured Half-Heusler Thermoelectrics for Efficient and Robust Energy Harvesting. <i>ACS Applied Energy Materials</i> , 2018 , 1, 5986-5992	6.1	8
226	Hierarchical CoP/Ni5P4/CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation. <i>Energy and Environmental Science</i> , 2018 , 11, 2246-2252	35.4	204
225	Water splitting by electrolysis at high current densities under 1.6 volts. <i>Energy and Environmental Science</i> , 2018 , 11, 2858-2864	35.4	273
224	Unusual high thermal conductivity in boron arsenide bulk crystals. <i>Science</i> , 2018 , 361, 582-585	33.3	185
223	High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. <i>Nature Communications</i> , 2018 , 9, 2551	17.4	566
222	Capillary-Force-Induced Cold Welding in Silver-Nanowire-Based Flexible Transparent Electrodes. <i>Nano Letters</i> , 2017 , 17, 1090-1096	11.5	145
221	Using the 18-Electron Rule To Understand the Nominal 19-Electron Half-Heusler NbCoSb with Nb Vacancies. <i>Chemistry of Materials</i> , 2017 , 29, 1210-1217	9.6	59
220	Three-Dimensional Nanoporous Iron Nitride Film as an Efficient Electrocatalyst for Water Oxidation. <i>ACS Catalysis</i> , 2017 , 7, 2052-2057	13.1	151
219	Grain Boundary Engineering for Achieving High Thermoelectric Performance in n-Type Skutterudites. <i>Advanced Energy Materials</i> , 2017 , 7, 1602582	21.8	146

218	A Highly Stretchable and Fatigue-Free Transparent Electrode Based on an In-Plane Buckled Au Nanotrough Network. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600534	6.4	28
217	The microscopic origin of low thermal conductivity for enhanced thermoelectric performance of Yb doped MgAgSb. <i>Acta Materialia</i> , 2017 , 128, 227-234	8.4	30
216	Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties. <i>Energy and Environmental Science</i> , 2017 , 10, 799-807	35.4	227
215	Thermal conductivity of (VO2)1-xCux composites across the phase transition temperature. <i>Journal of Applied Physics</i> , 2017 , 121, 155103	2.5	10
214	Engineering the Thermoelectric Transport in Half-Heusler Materials through a Bottom-Up Nanostructure Synthesis. <i>Advanced Energy Materials</i> , 2017 , 7, 1700446	21.8	40
213	Highly active catalyst derived from a 3D foam of Fe(PO)/NiP for extremely efficient water oxidation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 5607-5611	11.5	225
212	Filling fraction of Yb in CoSb3 Skutterudite studied by electron microscopy. <i>Applied Physics Letters</i> , 2017 , 110, 163901	3.4	5
211	Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide electrocatalysts. <i>Energy and Environmental Science</i> , 2017 , 10, 1487-1492	35.4	138
21 0	A TiO/FeMnP Core/Shell Nanorod Array Photoanode for Efficient Photoelectrochemical Oxygen Evolution. <i>ACS Nano</i> , 2017 , 11, 4051-4059	16.7	93
209	Colloidal Stability of Graphene-Based Amphiphilic Janus Nanosheet Fluid. <i>Chemistry of Materials</i> , 2017 , 29, 3454-3460	9.6	28
208	Thermoelectric Properties of n-type ZrNiPb-Based Half-Heuslers. Chemistry of Materials, 2017, 29, 867-	8326	48
207	Graphene Flakes: Orientation Control of Graphene Flakes by Magnetic Field: Broad Device Applications of Macroscopically Aligned Graphene (Adv. Mater. 1/2017). <i>Advanced Materials</i> , 2017 , 29,	24	6
206	Phonon scattering by nanoscale twin boundaries. <i>Nano Energy</i> , 2017 , 32, 174-179	17.1	54
205	Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting. <i>Nano Energy</i> , 2017 , 41, 327-336	17.1	174
204	A rapid method to extract Seebeck coefficient under a large temperature difference. <i>Review of Scientific Instruments</i> , 2017 , 88, 094902	1.7	5
203	Anomalous electrical conductivity of n-type Te-doped Mg3.2Sb1.5Bi0.5. <i>Materials Today Physics</i> , 2017 , 3, 1-6	8	67
202	Tellurium doped n-type Zintl Zr3Ni3Sb4 thermoelectric materials: Balance between carrier-scattering mechanism and bipolar effect. <i>Materials Today Physics</i> , 2017 , 2, 54-61	8	56
201	The effect of Sn doping on thermoelectric performance of n-type half-Heusler NbCoSb. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 25683-25690	3.6	19

200	Vertically Aligned MoS2/Mo2C hybrid Nanosheets Grown on Carbon Paper for Efficient Electrocatalytic Hydrogen Evolution. <i>ACS Catalysis</i> , 2017 , 7, 7312-7318	13.1	141
199	Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type MgSb-based materials. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 10548-10553	11.5	183
198	Secondary Oil Recovery Using Graphene-Based Amphiphilic Janus Nanosheet Fluid at an Ultralow Concentration. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 11125-11132	3.9	59
197	Defect Engineering for Realizing High Thermoelectric Performance in n-Type Mg3Sb2-Based Materials. <i>ACS Energy Letters</i> , 2017 , 2, 2245-2250	20.1	130
196	Bifunctional metal phosphide FeMnP films from single source metal organic chemical vapor deposition for efficient overall water splitting. <i>Nano Energy</i> , 2017 , 39, 444-453	17.1	89
195	Computational modelling of the thermoelectric properties of p-type Zintl compound CaMg2Bi2. <i>Materials Today Physics</i> , 2017 , 2, 40-45	8	33
194	Improved thermoelectric performance of n-type half-Heusler MCo1-xNixSb (M = Hf, Zr). <i>Materials Today Physics</i> , 2017 , 1, 24-30	8	110
193	Recent progress and future challenges on thermoelectric Zintl materials. <i>Materials Today Physics</i> , 2017 , 1, 74-95	8	195
192	VI∕O2 coreBhell structure for potential thermal switching. <i>RSC Advances</i> , 2017 , 7, 33775-33781	3.7	5
191	Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. <i>Energy and Environmental Science</i> , 2017 , 10, 1820-1827	35.4	733
190	Orientation Control of Graphene Flakes by Magnetic Field: Broad Device Applications of Macroscopically Aligned Graphene. <i>Advanced Materials</i> , 2017 , 29, 1604453	24	50
189	The influence of doping sites on achieving higher thermoelectric performance for nanostructured EMgAgSb. <i>Nano Energy</i> , 2017 , 31, 194-200	17.1	35
188	The bridge between the materials and devices of thermoelectric power generators. <i>Energy and Environmental Science</i> , 2017 , 10, 69-85	35.4	115
187	The effect of charge carrier and doping site on thermoelectric properties of Mg2Sn0.75Ge0.25. <i>Acta Materialia</i> , 2017 , 124, 528-535	8.4	18
186	Mechanical properties of nanostructured thermoelectric materials <code>HMgAgSb</code> . <i>Scripta Materialia</i> , 2017 , 127, 72-75	5.6	50
185	Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics. <i>Nature Communications</i> , 2016 , 7, 12825	17.4	34
184	Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 13576-13581	11.5	164
183	Toward a High-Efficient Utilization of Solar Radiation by Quad-Band Solar Spectral Splitting. <i>Advanced Materials</i> , 2016 , 28, 10659-10663	24	19

182	Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template. <i>Science Advances</i> , 2016 , 2, e1600993	14.3	39
181	Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. <i>Nature Energy</i> , 2016 , 1,	62.3	190
180	Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. <i>Nature Communications</i> , 2016 , 7, 12765	17.4	248
179	Highly Efficient Hydrogen Evolution from Edge-Oriented WSSe Particles on Three-Dimensional Porous NiSe Foam. <i>Nano Letters</i> , 2016 , 16, 7604-7609	11.5	109
178	Engineering Thermal Conductivity for Balancing Between Reliability and Performance of Bulk Thermoelectric Generators. <i>Advanced Functional Materials</i> , 2016 , 26, 3678-3686	15.6	17
177	Enhancement of thermoelectric performance of phase pure Zintl compounds Ca1Mb Zn2Sb2, Ca1Hu Zn2Sb2, and Eu1Mb Zn2Sb2 by mechanical alloying and hot pressing. <i>Nano Energy</i> , 2016 , 25, 136-144	17.1	54
176	Investigation of the bipolar effect in the thermoelectric material CaMg2Bi2 using a first-principles study. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 16566-74	3.6	47
175	Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 7711-6	11.5	129
174	Thermoelectric properties of n-type half-Heusler compounds (Hf0.25Zr0.75)1\(\text{N}\) NbxNiSn. <i>Acta Materialia</i> , 2016 , 113, 41-47	8.4	35
173	Lithium Doping to Enhance Thermoelectric Performance of MgAgSb with Weak Electron P honon Coupling. <i>Advanced Energy Materials</i> , 2016 , 6, 1502269	21.8	96
172	New insight into the material parameter B to understand the enhanced thermoelectric performance of Mg2Sn1₩GexSby. <i>Energy and Environmental Science</i> , 2016 , 9, 530-539	35.4	68
171	Thermoelectric properties of Bi-based Zintl compounds Ca1\(\mathbb{Q}\)YbxMg2Bi2. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4312-4320	13	69
170	High thermoelectric performance of n-type PbTe1B due to deep lying states induced by indium doping and spinodal decomposition. <i>Nano Energy</i> , 2016 , 22, 572-582	17.1	49
169	Predicting high thermoelectric performance of ABX ternary compounds NaMgX (X = P, Sb, As) with weak electron β honon coupling and strong bonding anharmonicity. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 3281-3289	7.1	32
168	Enhancing the Scratch Resistance by Introducing Chemical Bonding in Highly Stretchable and Transparent Electrodes. <i>Nano Letters</i> , 2016 , 16, 594-600	11.5	48
167	Studies on thermoelectric figure of merit of Na-doped p-type polycrystalline SnSe. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1848-1854	13	174
166	One-step synthesis of self-supported porous NiSe2/Ni hybrid foam: An efficient 3D electrode for hydrogen evolution reaction. <i>Nano Energy</i> , 2016 , 20, 29-36	17.1	227
165	Thermoelectric properties of materials near the band crossing line in Mg2SnMg2GeMg2Si system. <i>Acta Materialia</i> , 2016 , 103, 633-642	8.4	85

164	Synthesis and thermoelectric properties of n-type half-Heusler compound VCoSb with valence electron count of 19. <i>Journal of Alloys and Compounds</i> , 2016 , 654, 321-326	5.7	45
163	Recent progress in half-Heusler thermoelectric materials. <i>Materials Research Bulletin</i> , 2016 , 76, 107-112	2 5.1	104
162	Importance of high power factor in thermoelectric materials for power generation application: A perspective. <i>Scripta Materialia</i> , 2016 , 111, 3-9	5.6	122
161	Effects of antimony content in MgAg0.97Sbx on output power and energy conversion efficiency. <i>Acta Materialia</i> , 2016 , 102, 17-23	8.4	37
160	Plasmonic refraction-induced ultrahigh transparency of highly conducting metallic networks. <i>Laser and Photonics Reviews</i> , 2016 , 10, 465-472	8.3	6
159	Thermoelectric performance enhancement of Mg2Sn based solid solutions by band convergence and phonon scattering via Pb and Si/Ge substitution for Sn. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 20726-37	3.6	26
158	Higher thermoelectric performance of Zintl phases (Eu0.5Yb0.5)1-xCaxMg2Bi2 by band engineering and strain fluctuation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E4125-32	11.5	109
157	Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds. <i>Scientific Reports</i> , 2016 , 6, 22778	4.9	67
156	Enhanced thermoelectric properties of n-type NbCoSn half-Heusler by improving phase purity. <i>APL Materials</i> , 2016 , 4, 104804	5.7	48
155	Size effect in thermoelectric materials. <i>Npj Quantum Materials</i> , 2016 , 1,	5	154
155 154	Size effect in thermoelectric materials. <i>Npj Quantum Materials</i> , 2016 , 1, The effect of shallow vs. deep level doping on the performance of thermoelectric materials. <i>Applied Physics Letters</i> , 2016 , 109, 263902	5 3·4	154
	The effect of shallow vs. deep level doping on the performance of thermoelectric materials.		
154	The effect of shallow vs. deep level doping on the performance of thermoelectric materials. **Applied Physics Letters*, 2016, 109, 263902 Thermoelectric properties of Zintl compound CallNaxMg2Bi1.98. **Applied Physics Letters*, 2016,	3.4	11
154 153	The effect of shallow vs. deep level doping on the performance of thermoelectric materials. Applied Physics Letters, 2016, 109, 263902 Thermoelectric properties of Zintl compound Ca1\(\mathbb{N}\)axMg2Bi1.98. Applied Physics Letters, 2016, 108, 183901 High thermoelectric performance of superionic argyrodite compound Ag8SnSe6. Journal of	3.4	11 24
154 153 152	The effect of shallow vs. deep level doping on the performance of thermoelectric materials. Applied Physics Letters, 2016, 109, 263902 Thermoelectric properties of Zintl compound Ca1\(\text{NaxMg2Bi1.98}\). Applied Physics Letters, 2016, 108, 183901 High thermoelectric performance of superionic argyrodite compound Ag8SnSe6. Journal of Materials Chemistry C, 2016, 4, 5806-5813 Highly active and durable self-standing WS2/graphene hybrid catalysts for the hydrogen evolution	3.4 3.4 7.1	11 24 60
154 153 152 151	The effect of shallow vs. deep level doping on the performance of thermoelectric materials. <i>Applied Physics Letters</i> , 2016 , 109, 263902 Thermoelectric properties of Zintl compound Ca1\(\text{NaxMg2Bi1.98}\). <i>Applied Physics Letters</i> , 2016 , 108, 183901 High thermoelectric performance of superionic argyrodite compound Ag8SnSe6. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 5806-5813 Highly active and durable self-standing WS2/graphene hybrid catalysts for the hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9472-9476 Thermoelectric performance of Li doped, p-type Mg2(Ge,Sn) and comparison with Mg2(Si,Sn). <i>Acta</i>	3.4 3.4 7.1	11 24 60 66
154 153 152 151 150	The effect of shallow vs. deep level doping on the performance of thermoelectric materials. Applied Physics Letters, 2016, 109, 263902 Thermoelectric properties of Zintl compound Ca1\(\text{NaxMg2Bi1.98}. \text{ Applied Physics Letters}, \text{ 2016}, \ 108, 183901 High thermoelectric performance of superionic argyrodite compound Ag8SnSe6. Journal of Materials Chemistry C, 2016, 4, 5806-5813 Highly active and durable self-standing WS2/graphene hybrid catalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 9472-9476 Thermoelectric performance of Li doped, p-type Mg2(Ge,Sn) and comparison with Mg2(Si,Sn). Acta Materialia, 2016, 120, 273-280 Understanding and manipulating the intrinsic point defect in BMgAgSb for higher thermoelectric	3.4 3.4 7.1 13 8.4	1124606645

146	A new n-type half-Heusler thermoelectric material NbCoSb. <i>Materials Research Bulletin</i> , 2015 , 70, 773-7	78 1	56
145	Relationship between thermoelectric figure of merit and energy conversion efficiency. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 8205-10	11.5	300
144	The effect of nickel doping on electron and phonon transport in the n-type nanostructured thermoelectric material CoSbS. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10442-10450	7.1	40
143	Studies on Thermoelectric Properties of n-type Polycrystalline SnSe1-xSx by Iodine Doping. <i>Advanced Energy Materials</i> , 2015 , 5, 1500360	21.8	242
142	Topological effect of surface plasmon excitation in gapped isotropic topological insulator nanowires. <i>Canadian Journal of Physics</i> , 2015 , 93, 591-598	1.1	3
141	Experimental study of the proposed super-thermal-conductor: BAs. <i>Applied Physics Letters</i> , 2015 , 106, 074105	3.4	52
140	High thermoelectric power factor in CuNi alloy originate from potential barrier scattering of twin boundaries. <i>Nano Energy</i> , 2015 , 17, 279-289	17.1	56
139	Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 12332-7	11.5	71
138	Atomic Disorders Induced by Silver and Magnesium Ion Migrations Favor High Thermoelectric Performance in EMgAgSb-Based Materials. <i>Advanced Functional Materials</i> , 2015 , 25, 6478-6488	15.6	61
137	A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability. <i>Energy and Environmental Science</i> , 2015 , 8, 3040-3048	35.4	78
136	Thermal conductivity reduction by isoelectronic elements V and Ta for partial substitution of Nb in half-Heusler Nb(1 \boxed{N})/2V(1 \boxed{N})/2TaxCoSb. <i>RSC Advances</i> , 2015 , 5, 102469-102476	3.7	17
135	Study on thermoelectric performance by Na doping in nanostructured Mg1-xNaxAg0.97Sb0.99. <i>Nano Energy</i> , 2015 , 11, 640-646	17.1	64
134	Enhanced Thermal Stability of W-Ni-Al2O3 Cermet-Based Spectrally Selective Solar Absorbers with Tungsten Infrared Reflectors. <i>Advanced Energy Materials</i> , 2015 , 5, 1401042	21.8	120
133	Determination of Thermal History by Photoluminescence of Core-Shelled Quantum Dots Going Through Heating Events. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 65-71	3.1	8
132	Studies on mechanical properties of thermoelectric materials by nanoindentation. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 2191-2195	1.6	49
131	Thermoelectric properties of Na-doped Zintl compound: Mg3Na Sb2. <i>Acta Materialia</i> , 2015 , 93, 187-193	8.4	91
130	Optimizing the thermoelectric performance of low-temperature SnSe compounds by electronic structure design. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13365-13370	13	47
129	Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. <i>Advances in Physics</i> , 2015 , 64, 519-626	18.4	486

(2014-2015)

128	Enhancement of Thermoelectric Performance of n-Type PbSe by Cr Doping with Optimized Carrier Concentration. <i>Advanced Energy Materials</i> , 2015 , 5, 1401977	21.8	76
127	Thermoelectric and mechanical properties on misch metal filled p-type skutterudites Mm0.9Fe4\(\text{MCoxSb12}. \) Journal of Applied Physics, 2015 , 117, 055101	2.5	21
126	Effect of Cu concentration on thermoelectric properties of nanostructured p-type MgAg0.97 L u Sb0.99. <i>Acta Materialia</i> , 2015 , 87, 266-272	8.4	45
125	Current progress and future challenges in thermoelectric power generation: From materials to devices. <i>Acta Materialia</i> , 2015 , 87, 357-376	8.4	339
124	High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts. Energy and Environmental Science, 2015 , 8, 1299-1308	35.4	114
123	Anomalous vibrational properties of cubic boron arsenide. <i>Physical Review B</i> , 2014 , 89,	3.3	26
122	High thermoelectric performance of MgAgSb-based materials. <i>Nano Energy</i> , 2014 , 7, 97-103	17.1	197
121	Magnetic Properties of Hot-Pressed \${rm FeSb}_{{2}}\$. IEEE Transactions on Magnetics, 2014 , 50, 1-4	2	1
120	Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. <i>Nature Nanotechnology</i> , 2014 , 9, 69-73	28.7	641
119	Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. <i>Nature Communications</i> , 2014 , 5, 3121	17.4	310
118	NbFeSb-based p-type half-Heuslers for power generation applications. <i>Energy and Environmental Science</i> , 2014 , 7, 4070-4076	35.4	137
117	Nanostructured YbAgCu4 for potentially cryogenic thermoelectric cooling. <i>Nano Letters</i> , 2014 , 14, 5016	6 -20 5	16
116	Molecular extraction in single live cells by sneaking in and out magnetic nanomaterials. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 10966-71	11.5	16
115	Enhanced Thermoelectric Performance of Te-doped FeSb(_{2}) Nanocomposite. <i>Journal of Low Temperature Physics</i> , 2014 , 176, 122-130	1.3	3
114	Metallic nanostructures for light trapping in energy-harvesting devices. <i>Light: Science and Applications</i> , 2014 , 3, e161-e161	16.7	327
113	Substitution of Antimony by Tin and Tellurium in n-Type Skutterudites CoSb2.8Sn x Te0.2⊠. <i>Jom</i> , 2014 , 66, 2282-2287	2.1	7
112	A review of cermet-based spectrally selective solar absorbers. <i>Energy and Environmental Science</i> , 2014 , 7, 1615	35.4	300
111	Transparent Conductive Electrodes: Uniform Self-Forming Metallic Network as a High-Performance Transparent Conductive Electrode (Adv. Mater. 6/2014). <i>Advanced Materials</i> , 2014 , 26, 980-980	24	3

110	Bio-inspired networks for optoelectronic applications. <i>Nature Communications</i> , 2014 , 5, 5674	17.4	89
109	Investigating the thermoelectric properties of p-type half-Heusler Hfx(ZrTi)1⊠CoSb0.8Sn0.2 by reducing Hf concentration for power generation. <i>RSC Advances</i> , 2014 , 4, 64711-64716	3.7	44
108	Effect of dehydrated-attapulgite nanoinclusions on the thermoelectric properties of BiSbTe alloys. <i>RSC Advances</i> , 2013 , 3, 4951	3.7	11
107	Nanoporous gallium nitride square microtubes. <i>Journal of Materials Science</i> , 2013 , 48, 7703-7707	4.3	2
106	Fast phase formation of double-filled p-type skutterudites by ball-milling and hot-pressing. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 6809-16	3.6	74
105	Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13093	13	90
104	Increased thermoelectric performance by Cl doping in nanostructured AgPb18SbSe20⊠Clx. <i>Nano Energy</i> , 2013 , 2, 1121-1127	17.1	28
103	Enhancement of thermoelectric figure-of-merit at low temperatures by titanium substitution for hafnium in n-type half-Heuslers Hf0.75\(\text{WTixZr0.25NiSn0.99Sb0.01}\). <i>Nano Energy</i> , 2013 , 2, 82-87	17.1	86
102	Recent progress of half-Heusler for moderate temperature thermoelectric applications. <i>Materials Today</i> , 2013 , 16, 387-395	21.8	375
101	Effect of Hf Concentration on Thermoelectric Properties of Nanostructured N-Type Half-Heusler Materials HfxZr1\(\text{N}\) NiSn0.99Sb0.01. Advanced Energy Materials, 2013 , 3, 1210-1214	21.8	158
100	Thermoelectric property enhancement by Cu nanoparticles in nanostructured FeSb2. <i>Applied Physics Letters</i> , 2013 , 102, 213111	3.4	28
99	Thermoelectric Property Study of Nanostructured p-Type Half-Heuslers (Hf, Zr, Ti)CoSb0.8Sn0.2. <i>Advanced Energy Materials</i> , 2013 , 3, 1195-1200	21.8	119
98	Studies on the Bi2Te3 B i2Se3 B i2S3 system for mid-temperature thermoelectric energy conversion. <i>Energy and Environmental Science</i> , 2013 , 6, 552-560	35.4	201
97	Metallic Nanowire Networks: Transparent Nanowire Network Electrode for Textured Semiconductors (Small 5/2013). <i>Small</i> , 2013 , 9, 732-732	11	1
96	High thermoelectric performance by resonant dopant indium in nanostructured SnTe. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 13261-6	11.5	503
95	Skutterudite Unicouple Characterization for Energy Harvesting Applications. <i>Advanced Energy Materials</i> , 2013 , 3, 245-251	21.8	73
94	Effect of aluminum on the thermoelectric properties of nanostructured PbTe. <i>Nanotechnology</i> , 2013 , 24, 345705	3.4	29
93	Phonon drag effect in nanocomposite FeSb2. MRS Communications, 2013, 3, 31-36	2.7	21

(2012-2013)

92	Evidence for critical scaling of plasmonic modes at the percolation threshold in metallic nanostructures. <i>Applied Physics Letters</i> , 2013 , 103, 171106	3.4	14
91	Experimental determination of the Lorenz number in Cu0.01Bi2Te2.7Se0.3 and Bi0.88Sb0.12. <i>Physical Review B</i> , 2012 , 85,	3.3	34
90	Inelastic neutron scattering study of phonon density of states in nanostructured Si1 Gex thermoelectrics. <i>Physical Review B</i> , 2012 , 86,	3.3	6
89	Paramagnetic microspheres with coreBhell-ed structures. <i>Journal of Materials Science</i> , 2012 , 47, 5946-5	9543	1
88	Hybrid structure of pH-responsive hydrogel and carbon nanotube array with superwettability. Journal of Materials Chemistry, 2012 , 22, 2449-2455		30
87	Thermoelectric properties of n-type PbSe revisited. <i>Journal of Applied Physics</i> , 2012 , 111, 123701	2.5	16
86	Recent advances in thermoelectric nanocomposites. <i>Nano Energy</i> , 2012 , 1, 42-56	17.1	536
85	Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer. <i>Nano Energy</i> , 2012 , 1, 472-478	17.1	217
84	Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. <i>Nano Letters</i> , 2012 , 12, 2077-82	11.5	395
83	Study of the thermoelectric properties of lead selenide doped with boron, gallium, indium, or thallium. <i>Journal of the American Chemical Society</i> , 2012 , 134, 17731-8	16.4	89
82	Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. <i>Energy and Environmental Science</i> , 2012 , 5, 5246-5251	35.4	299
81	Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1\(\text{MTixCoSb0.8Sn0.2}. \) Energy and Environmental Science, 2012 , 5, 7543	35.4	205
80	Anharmonic phonons and magnons in BiFeO3. <i>Physical Review B</i> , 2012 , 85,	3.3	28
79	Perspectives on thermoelectrics: from fundamentals to device applications. <i>Energy and Environmental Science</i> , 2012 , 5, 5147-5162	35.4	925
78	Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe(1-y)Se(y). <i>Journal of the American Chemical Society</i> , 2012 , 134, 10031-8	16.4	297
77	Thermoelectric properties of Ho-doped Bi0.88Sb0.12. <i>Journal of Materials Science</i> , 2012 , 47, 5729-5734	4.3	7
76	Thermoelectric properties of Bi-FeSb2 nanocomposites: Evidence for phonon-drag effect. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1490, 115-120		1
75	Cerium Doped Bismuth Antimony. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1456, 7		2

74	Transport properties of Ni, Co, Fe, Mn doped Cu0.01Bi2Te2.7Se0.3 for thermoelectric device applications. <i>Journal of Applied Physics</i> , 2012 , 112, 054509	2.5	13
73	Disordered stoichiometric nanorods and ordered off-stoichiometric nanoparticles in n-type thermoelectric Bi2Te2.7Se0.3. <i>Journal of Applied Physics</i> , 2012 , 112, 093518	2.5	4
72	Role of phonon dispersion in studying phonon mean free paths in skutterudites. <i>Journal of Applied Physics</i> , 2012 , 112, 044305	2.5	23
71	Enhanced Thermoelectric Properties of FeSbx Nanocomposites Through Stoichiometric Adjustment. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1456, 27		1
7°	Enhanced thermoelectric figure of merit of p-type half-Heuslers. <i>Nano Letters</i> , 2011 , 11, 556-60	11.5	326
69	Physics and applications of aligned carbon nanotubes. <i>Advances in Physics</i> , 2011 , 60, 553-678	18.4	108
68	Modeling of concentrating solar thermoelectric generators. <i>Journal of Applied Physics</i> , 2011 , 110, 0745	02 .5	56
67	High-performance flat-panel solar thermoelectric generators with high thermal concentration. <i>Nature Materials</i> , 2011 , 10, 532-8	27	790
66	Power factor enhancement by modulation doping in bulk nanocomposites. <i>Nano Letters</i> , 2011 , 11, 222	5- 3 05	386
65	Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2011 , 208, 924-927	1.6	21
64	Enhancement in Thermoelectric Figure-Of-Merit of an N-Type Half-Heusler Compound by the Nanocomposite Approach. <i>Advanced Energy Materials</i> , 2011 , 1, 643-647	21.8	256
63	Thermoelectric Property Studies on Cu-Doped n-type CuxBi2Te2.7Se0.3 Nanocomposites. <i>Advanced Energy Materials</i> , 2011 , 1, 577-587	21.8	447
62	Neutron scattering study of magnetic phase separation in nanocrystalline La5/8Ca3/8MnO3. <i>Physical Review B</i> , 2011 , 84,	3.3	11
61	Growth of aligned carbon nanotubes on ALD-Al2O3 coated silicon and quartz substrates. <i>Journal of Experimental Nanoscience</i> , 2011 , 6, 464-472	1.9	4
60	Effect of selenium deficiency on the thermoelectric properties of n-type In4Se3II compounds. <i>Physical Review B</i> , 2011 , 83,	3.3	57
59	Multiferroic phase diagram of Y partially substituted Dy1\(\mathbb{I}\)YxMnO3. <i>Applied Physics Letters</i> , 2011 , 98, 012510	3.4	26
58	Dramatic thermal conductivity reduction by nanostructures for large increase in thermoelectric figure-of-merit of FeSb2. <i>Applied Physics Letters</i> , 2011 , 99, 163101	3.4	42
57	Transmission electron microscopy study of Pb-depleted disks in PbTe-based alloys. <i>Journal of Materials Research</i> , 2011 , 26, 912-916	2.5	22

(2008-2010)

56	Grids for Applications in High-Temperature High-Resolution Transmission Electron Microscopy. <i>Journal of Nanotechnology</i> , 2010 , 2010, 1-6	3.5	3
55	Theoretical studies on the thermoelectric figure of merit of nanograined bulk silicon. <i>Applied Physics Letters</i> , 2010 , 97, 063109	3.4	48
54	Effects of nanoscale porosity on thermoelectric properties of SiGe. <i>Journal of Applied Physics</i> , 2010 , 107, 094308	2.5	152
53	Effect of filler mass and binding on thermal conductivity of fully filled skutterudites. <i>Physical Review B</i> , 2010 , 82,	3.3	18
52	Efficient nanocoax-based solar cells. <i>Physica Status Solidi - Rapid Research Letters</i> , 2010 , 4, 181-183	2.5	77
51	Percolation and polaritonic effects in periodic planar nanostructures evolving from holes to islands. <i>Applied Physics Letters</i> , 2010 , 97, 041901	3.4	8
50	Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. <i>Nano Letters</i> , 2010 , 10, 3373-8	11.5	524
49	Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach. <i>Advanced Functional Materials</i> , 2010 , 20, 357-376	15.6	706
48	Hot electron effect in nanoscopically thin photovoltaic junctions. <i>Applied Physics Letters</i> , 2009 , 95, 233	12314	37
47	Thermoelectric properties and efficiency measurements under large temperature differences. <i>Review of Scientific Instruments</i> , 2009 , 80, 093901	1.7	49
46	Bulk nanostructured thermoelectric materials: current research and future prospects. <i>Energy and Environmental Science</i> , 2009 , 2, 466	35.4	1448
45	Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. <i>Physical Review Letters</i> , 2009 , 102, 196803	7.4	228
44	Solubility study of Yb in n-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties. <i>Physical Review B</i> , 2009 , 80,	3.3	92
43	Modeling study of thermoelectric SiGe nanocomposites. <i>Physical Review B</i> , 2009 , 80,	3.3	160
42	Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. <i>Applied Physics Letters</i> , 2008 , 93, 193121	3.4	560
41	Specific heat anomalies and possible Griffiths-like phase in La0.4Ca0.6MnO3 nanoparticles. <i>Journal of Applied Physics</i> , 2008 , 103, 07F714	2.5	34
40	Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. <i>Nano Letters</i> , 2008 , 8, 4670-4	11.5	861
39	Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. <i>Nano Letters</i> , 2008 , 8, 2580-4	11.5	476

38	Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. Journal of Applied Physics, 2008, 103, 074301	2.5	311
37	Interaction between carbon nanotubes and mammalian cells: characterization by flow cytometry and application. <i>Nanotechnology</i> , 2008 , 19, 1-10	3.4	584
36	The great improvement effect of pores on ZT in Co1⊠NixSb3 system. <i>Applied Physics Letters</i> , 2008 , 93, 042108	3.4	41
35	Discretely guided electromagnetic effective medium. <i>Applied Physics Letters</i> , 2008 , 92, 043114	3.4	12
34	Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials. <i>Applied Physics Letters</i> , 2008 , 92, 101910	3.4	80
33	High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. <i>Science</i> , 2008 , 320, 634-8	33.3	4220
32	Preparation of aligned Ca3Co2O6 nanorods and their steplike magnetization. <i>Applied Physics Letters</i> , 2007 , 91, 042505	3.4	21
31	Dropwise condensation on superhydrophobic surfaces with two-tier roughness. <i>Applied Physics Letters</i> , 2007 , 90, 173108	3.4	275
30	Charge order suppression and weak ferromagnetism in La1BSr2BFeO3 nanoparticles. <i>Applied Physics Letters</i> , 2007 , 91, 072504	3.4	31
29	Surface phase separation in nanosized charge-ordered manganites. <i>Applied Physics Letters</i> , 2007 , 90, 082508	3.4	108
28	Preparation and photoabsorption characterization of BiFeO3 nanowires. <i>Applied Physics Letters</i> , 2006 , 89, 102506	3.4	305
27	Ferromagnetic metal to cluster-glass insulator transition induced by A-site disorder in manganites. <i>Applied Physics Letters</i> , 2006 , 88, 152505	3.4	16
26	Improved superlensing in two-dimensional photonic crystals with a basis. <i>Applied Physics Letters</i> , 2005 , 86, 061105	3.4	20
25	Low-dimensional phonon specific heat of titanium dioxide nanotubes. <i>Applied Physics Letters</i> , 2005 , 87, 031901	3.4	32
24	Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. <i>Nature Methods</i> , 2005 , 2, 449-54	21.6	482
23	Interface reactions in a chromium buffer layer deposited between stainless steel and a silicon substrate. <i>Philosophical Magazine</i> , 2005 , 85, 1459-1471	1.6	1
22	Plasma deposition of thin carbonfluorine films on aligned carbon nanotube. <i>Applied Physics Letters</i> , 2005 , 86, 043107	3.4	12
21	High-bias-induced structure and the corresponding electronic property changes in carbon nanotubes. <i>Applied Physics Letters</i> , 2005 , 87, 263107	3.4	39

(2001-2004)

20	Correlation of field emission and surface microstructure of vertically aligned carbon nanotubes. <i>Applied Physics Letters</i> , 2004 , 84, 413-415	3.4	67
19	Transplanting carbon nanotubes. <i>Applied Physics Letters</i> , 2004 , 85, 5995-5997	3.4	20
18	Synthesis, Characterization and Thermal Stability of Highly Crystallized Titania Nanotubes. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 836, L1.8.1		
17	Magnetic resonance of Cu and of Gd in insulating GdSr2Cu2NbO8 and in superconducting GdSr2Cu2RuO8. <i>JETP Letters</i> , 2004 , 80, 190-194	1.2	6
16	Using Block Copolymer Micellar Thin Films as Templates for the Production of Catalysts for Carbon Nanotube Growth. <i>Chemistry of Materials</i> , 2004 , 16, 5589-5595	9.6	54
15	Hierarchical oxide nanostructures. <i>Journal of Materials Chemistry</i> , 2004 , 14, 770		89
14	Individual free-standing carbon nanofibers addressable on the 50 nm scale. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2003 , 21, 1004		12
13	Nanoelectrode Arrays Based on Low Site Density Aligned Carbon Nanotubes. <i>Nano Letters</i> , 2003 , 3, 10	07-10.9	127
12	Growth of large periodic arrays of carbon nanotubes. <i>Applied Physics Letters</i> , 2003 , 82, 460-462	3.4	133
11	ZnO Nanobridges and Nanonails. <i>Nano Letters</i> , 2003 , 3, 235-238	11.5	582
10	Muon spin rotation in GdSr2Cu2RuO8: Implications. <i>Philosophical Magazine</i> , 2003 , 83, 3055-3073	1.6	4
9	Thermal Conductivity Reduction of SiGe Nanocomposites. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 793, 232		
8	Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. <i>Applied Physics Letters</i> , 2003 , 82, 3520-3522	3.4	230
7	Boron carbide nanolumps on carbon nanotubes. <i>Applied Physics Letters</i> , 2002 , 80, 500-502	3.4	30
6	SYNTHESIS OF AMORPHOUS SIOx NANOSTRUCTURES. <i>International Journal of Nanoscience</i> , 2002 , 01, 149-157	0.6	9
5	Growth of aligned carbon nanotubes with controlled site density. <i>Applied Physics Letters</i> , 2002 , 80, 40	 18-₃4.µ2.0	148
4	Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films. <i>Journal of Materials Research</i> , 2001 , 16, 3246-3253	2.5	58
3	Straight carbon nanotube Y junctions. <i>Applied Physics Letters</i> , 2001 , 79, 1879-1881	3.4	102

Dispersion and Alignment of Carbon Nanotubes in Polycarbonate. *Materials Research Society Symposia Proceedings*, **2001**, 706, 1

3

Fabrication of Freestanding Carbon Nanotube Arrays in Large Scale. *Materials Research Society Symposia Proceedings*, **2000**, 633, 13221

2