
Bellamkonda K Kishore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1548818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activating P2Y1 receptors improves function in arteries with repressed autophagy. Cardiovascular Research, 2023, 119, 252-267.	3.8	10
2	Extracellular Nucleotides and P2 Receptors in Renal Function. Physiological Reviews, 2020, 100, 211-269.	28.8	58
3	P2Y2 Receptor Promotes High-Fat Diet-Induced Obesity. Frontiers in Endocrinology, 2020, 11, 341.	3.5	23
4	Conversion of extracellular ATP into adenosine: a master switch in renal health and disease. Nature Reviews Nephrology, 2020, 16, 509-524.	9.6	70
5	Genetic deletion of ADPâ€activated P2Y ₁₂ receptor ameliorates lithiumâ€induced nephrogenic diabetes insipidus in mice. Acta Physiologica, 2019, 225, e13191.	3.8	7
6	CD39-adenosinergic axis in renal pathophysiology and therapeutics. Purinergic Signalling, 2018, 14, 109-120.	2.2	25
7	Genetic Deletion of P2Y2 Receptor Offers Long-Term (5 Months) Protection Against Lithium-Induced Polyuria, Natriuresis, Kaliuresis, and Collecting Duct Remodeling and Cell Proliferation. Frontiers in Physiology, 2018, 9, 1765.	2.8	5
8	H3 Symposium: Purinergic Signalling in Obesity and Renal Pathophysiology. , 2018, , 18-18.		0
9	Prasugrel suppresses development of lithium-induced nephrogenic diabetes insipidus in mice. Purinergic Signalling, 2017, 13, 239-248.	2.2	10
10	Regulation of Vascular and Renal Function by Metabolite Receptors. Annual Review of Physiology, 2016, 78, 391-414.	13.1	32
11	Flow regulation of endothelin-1 production in the inner medullary collecting duct. American Journal of Physiology - Renal Physiology, 2015, 308, F541-F552.	2.7	31
12	Impaired natriuretic response to high-NaCl diet plus aldosterone infusion in mice overexpressing human CD39, an ectonucleotidase (NTPDase1). American Journal of Physiology - Renal Physiology, 2015, 308, F1398-F1408.	2.7	8
13	P2Y12 Receptor Localizes in the Renal Collecting Duct and Its Blockade Augments Arginine Vasopressin Action and Alleviates Nephrogenic Diabetes Insipidus. Journal of the American Society of Nephrology: JASN, 2015, 26, 2978-2987.	6.1	49
14	Targeting renal purinergic signalling for the treatment of lithiumâ€induced nephrogenic diabetes insipidus. Acta Physiologica, 2015, 214, 176-188.	3.8	28
15	Clopidogrel attenuates lithium-induced alterations in renal water and sodium channels/transporters in mice. Purinergic Signalling, 2015, 11, 507-518.	2.2	17
16	P2Y2 Receptor Facilitates Highâ€fat diet Induced Insulin Resistance. FASEB Journal, 2015, 29, 805.7.	0.5	2
17	Lithium: a versatile tool for understanding renal physiology. American Journal of Physiology - Renal Physiology, 2013, 304, F1139-F1149.	2.7	70
18	Attenuation of lithium-induced natriuresis and kaliuresis in P2Y ₂ receptor knockout mice. American Journal of Physiology - Renal Physiology, 2013, 305, F407-F416.	2.7	26

#	Article	IF	CITATIONS
19	Cellular localization of adenine receptors in the rat kidney and their functional significance in the inner medullary collecting duct. American Journal of Physiology - Renal Physiology, 2013, 305, F1298-F1305.	2.7	12
20	Genetic deletion of the P2Y ₂ receptor offers significant resistance to development of lithium-induced polyuria accompanied by alterations in PGE ₂ signaling. American Journal of Physiology - Renal Physiology, 2012, 302, F70-F77.	2.7	36
21	Defective renal water handling in transgenic mice over-expressing human CD39/NTPDase1. American Journal of Physiology - Renal Physiology, 2012, 303, F420-F430.	2.7	9
22	Cellular Localization of PO (Adenine) Receptor in Rat Kidney. FASEB Journal, 2012, 26, 688.3.	0.5	3
23	Renal sodium transporter/channel expression and sodium excretion in P2Y2 receptor knockout mice fed a high-NaCl diet with/without aldosterone infusion. American Journal of Physiology - Renal Physiology, 2011, 300, F657-F668.	2.7	33
24	Potential involvement of P2Y2 receptor in diuresis of postobstructive uropathy in rats. American Journal of Physiology - Renal Physiology, 2010, 298, F634-F642.	2.7	18
25	Application of Principles and Metrics of Operations Management to Water Processing in the Kidney. FASEB Journal, 2010, 24, lb702.	0.5	Ο
26	Potential role of purinergic signaling in lithium-induced nephrogenic diabetes insipidus. American Journal of Physiology - Renal Physiology, 2009, 296, F1194-F1201.	2.7	26
27	P2Y2 receptors and water transport in the kidney. Purinergic Signalling, 2009, 5, 491-499.	2.2	44
28	Potential role of purinergic signaling in urinary concentration in inner medulla: insights from P2Y2 receptor gene knockout mice. American Journal of Physiology - Renal Physiology, 2008, 295, F1715-F1724.	2.7	50
29	Administration of poly-d-glutamic acid induces proliferation of erythropoietin-producing peritubular cells in rat kidney. American Journal of Physiology - Renal Physiology, 2007, 292, F749-F761.	2.7	7
30	Increased urinary concentrating ability of P2Y2 receptor null mice is associated with marked increase in protein abundances of AQP2 and UTâ€A in renal medulla. FASEB Journal, 2007, 21, A905.	0.5	1
31	Modulation of the in vitro activity of lysosomal phospholipase A1 by membrane lipids. Chemistry and Physics of Lipids, 2005, 133, 1-15.	3.2	21
32	P2Y2 receptor-mediated release of prostaglandin E2 by IMCD is altered in hydrated and dehydrated rats: relevance to AVP-independent regulation of IMCD function. American Journal of Physiology - Renal Physiology, 2005, 289, F585-F592.	2.7	27
33	P2Y2 receptor mRNA and protein expression is altered in inner medullas of hydrated and dehydrated rats: relevance to AVP-independent regulation of IMCD function. American Journal of Physiology - Renal Physiology, 2005, 288, F1164-F1172.	2.7	30
34	Expression of NTPDase1 and NTPDase2 in murine kidney: relevance to regulation of P2 receptor signaling. American Journal of Physiology - Renal Physiology, 2005, 288, F1032-F1043.	2.7	70
35	Chronic dDAVP infusion in rats decreases the expression of P2Y2 receptor in inner medulla and P2Y2 receptor-mediated PGE2 release by IMCD. American Journal of Physiology - Renal Physiology, 2005, 289, F768-F776.	2.7	21
36	Cellular and molecular studies on cisplatin-induced apoptotic cell death in rat kidney. Archives of Toxicology, 2004, 78, 147-155.	4.2	75

#	Article	IF	CITATIONS
37	Annexin A4 Reduces Water and Proton Permeability of Model Membranes but Does Not Alter Aquaporin 2–mediated Water Transport in Isolated Endosomes. Journal of General Physiology, 2003, 121, 413-425.	1.9	46
38	P2Y2 receptor-stimulated release of prostaglandin E2 by rat inner medullary collecting duct preparations. American Journal of Physiology - Renal Physiology, 2003, 285, F711-F721.	2.7	51
39	Extracellular nucleotide signaling along the renal epithelium. American Journal of Physiology - Renal Physiology, 2001, 280, F945-F963.	2.7	144
40	Expression of salt and urea transporters in rat kidney during cisplatin-induced polyuria. Kidney International, 2001, 60, 2274-2282.	5.2	31
41	Molecular physiology of urinary concentration defect in elderly population. International Urology and Nephrology, 2001, 33, 235-248.	1.4	8
42	Expression of renal aquaporins 1, 2, and 3 in a rat model of cisplatin-induced polyuria. Kidney International, 2000, 58, 701-711.	5.2	67
43	Developmental Expression of Aquaporin 2 in the Mouse Inner Ear. Laryngoscope, 2000, 110, 1925-1930.	2.0	30
44	Cellular localization of P2Y2 purinoceptor in rat renal inner medulla and lung. American Journal of Physiology - Renal Physiology, 2000, 278, F43-F51.	2.7	71
45	Expression of synaptotagmin VIII in rat kidney. American Journal of Physiology - Renal Physiology, 1998, 275, F131-F142.	2.7	14
46	SNAP-23 in rat kidney: colocalization with aquaporin-2 in collecting duct vesicles. American Journal of Physiology - Renal Physiology, 1998, 275, F752-F760.	2.7	46
47	Expression of syntaxins in rat kidney. American Journal of Physiology - Renal Physiology, 1997, 273, F718-F730.	2.7	39
48	Effect of substrate organization on the activity and on the mechanism of gentamicin-induced inhibition of rat liver lysosomal phospholipase A1. Biochemical Pharmacology, 1992, 43, 895-898.	4.4	14
49	Aminoglycoside-induced renal phospholipidosis and nephrotoxicity. Biochemical Pharmacology, 1990, 40, 2383-2392.	4.4	161