Naoto Keicho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1548801/publications.pdf

Version: 2024-02-01

102	3,366	35	52
papers	citations	h-index	g-index
107	107	107	4182 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Novel Screening System of Virulent Strains for the Establishment of a <i>Mycobacterium avium </i> Complex Lung Disease Mouse Model Using Whole-Genome Sequencing. Microbiology Spectrum, 2022, 10, e0045122.	3.0	4
2	Phenotypic and genotypic features of the Mycobacterium tuberculosis lineage 1 subgroup in central Vietnam. Scientific Reports, $2021,11,13609$.	3.3	2
3	Primary ciliary dyskinesia caused by a large homozygous deletion including exons 1–4 of <i>DRC1</i> in Japanese patients with recurrent sinopulmonary infection. Molecular Genetics & amp; Genomic Medicine, 2020, 8, e1033.	1.2	23
4	Genotyping of Mycobacterium tuberculosis spreading in Hanoi, Vietnam using conventional and whole genome sequencing methods. Infection, Genetics and Evolution, 2020, 78, 104107.	2.3	11
5	Membrane-associated mucins of the ocular surface: New genes, new protein functions and new biological roles in human and mouse. Progress in Retinal and Eye Research, 2020, 75, 100777.	15.5	30
6	Coordinated In Vitro Release of Granulysin, Perforin and IFN- \hat{l}^3 in TB and HIV/TB Co-Infection Associated with Clinical Outcomes before and after Anti-TB Treatment. Pathogens, 2020, 9, 655.	2.8	4
7	Can Interferon-Î ³ Release Assays Be Useful for Monitoring the Response to Anti-tuberculosis Treatment?: A Systematic Review and Meta-analysis. Archivum Immunologiae Et Therapiae Experimentalis, 2020, 68, 4.	2.3	7
8	Primary ciliary dyskinesia in Japan: systematic review and meta-analysis. BMC Pulmonary Medicine, 2019, 19, 135.	2.0	14
9	Recurring large deletion in <i>DRC1</i> (<i>CCDC164</i>) identified as causing primary ciliary dyskinesia in two Asian patients. Molecular Genetics & Enomic Medicine, 2019, 7, e838.	1.2	30
10	Whole-genome sequencing-based epidemiological analysis of anti-tuberculosis drug resistance genes in Japan in 2007: Application of the Genome Research for Asian Tuberculosis (GReAT) database. Scientific Reports, 2019, 9, 12823.	3.3	10
11	Whole genome sequencing, analyses of drug resistance-conferring mutations, and correlation with transmission of Mycobacterium tuberculosis carrying katG-S315T in Hanoi, Vietnam. Scientific Reports, 2019, 9, 15354.	3.3	20
12	Complete Genome Sequences of Three Representative Mycobacterium tuberculosis Beijing Family Strains Belonging to Distinct Genotype Clusters in Hanoi, Vietnam, during 2007 to 2009. Genome Announcements, 2017, 5, .	0.8	7
13	Complete Genome Sequence of a Mycobacterium tuberculosis Strain Belonging to the East African-Indian Family in the Indo-Oceanic Lineage, Isolated in Hanoi, Vietnam. Genome Announcements, 2017, 5, .	0.8	7
14	Spoligotyping and whole-genome sequencing analysis of lineage 1 strains of Mycobacterium tuberculosis in Da Nang, Vietnam. PLoS ONE, 2017, 12, e0186800.	2.5	8
15	Diffuse Panbronchiolitis. Milestones in Drug Therapy, 2017, , 21-38.	0.1	0
16	Circulating granulysin levels in healthcare workers and latent tuberculosis infection estimated using interferon-gamma release assays. BMC Infectious Diseases, 2016, 16, 580.	2.9	7
17	Identification of ITPA on chromosome 20 as a susceptibility gene for young-onset tuberculosis. Human Genome Variation, 2016, 3, 15067.	0.7	13
18	Variants near the HLA complex group 22 gene (HCG22) confer increased susceptibility to late-onset asthma in Japanese populations. Journal of Allergy and Clinical Immunology, 2016, 138, 281-283.e13.	2.9	28

#	Article	IF	CITATIONS
19	Influence of the polymorphism of the DUSP14 gene on the expression of immune-related genes and development of pulmonary tuberculosis. Genes and Immunity, 2016, 17, 207-212.	4.1	13
20	Dynamics of immune parameters during the treatment of active tuberculosis showing negative interferon gamma response at the time of diagnosis. International Journal of Infectious Diseases, 2015, 40, 39-44.	3.3	11
21	Sublineages of Mycobacterium tuberculosis Beijing genotype strains and unfavorable outcomes of anti-tuberculosis treatment. Tuberculosis, 2015, 95, 336-342.	1.9	17
22	Identification of a Novel Mucin Gene <i>HCG22</i> Associated With Steroid-Induced Ocular Hypertension., 2015, 56, 2737.		28
23	Mycobacterium tuberculosis strains spreading in Hanoi, Vietnam: Beijing sublineages, genotypes, drug susceptibility patterns, and host factors. Tuberculosis, 2014, 94, 649-656.	1.9	33
24	Association between tuberculosis recurrence and interferon- \hat{l}^3 response during treatment. Journal of Infection, 2014, 69, 616-626.	3.3	8
25	Age-dependent association of mannose-binding lectin polymorphisms with the development of pulmonary tuberculosis in Viet Nam. Human Immunology, 2014, 75, 840-846.	2.4	14
26	MxA transcripts with distinct first exons and modulation of gene expression levels by single-nucleotide polymorphisms in human bronchial epithelial cells. Immunogenetics, 2013, 65, 107-114.	2.4	3
27	Differential effects of a common splice site polymorphism on the generation of OAS1 variants in human bronchial epithelial cells. Human Immunology, 2013, 74, 395-401.	2.4	14
28	Clonal expansion of Mycobacterium tuberculosis isolates and coexisting drug resistance in patients newly diagnosed with pulmonary tuberculosis in Hanoi, Vietnam. BMC Research Notes, 2013, 6, 444.	1.4	6
29	Potential Function of Granulysin, Other Related Effector Molecules and Lymphocyte Subsets in Patients with TB and HIV/TB Coinfection. International Journal of Medical Sciences, 2013, 10, 1003-1014.	2.5	19
30	Primary Drug-Resistant Tuberculosis in Hanoi, Viet Nam: Present Status and Risk Factors. PLoS ONE, 2013, 8, e71867.	2.5	28
31	Macrolide Therapy in Chronic Inflammatory Diseases. Mediators of Inflammation, 2012, 2012, 1-2.	3.0	5
32	Diffuse Panbronchiolitis. Clinics in Chest Medicine, 2012, 33, 297-305.	2.1	44
33	Association of SLC11A1 (NRAMP1) polymorphisms with pulmonary Mycobacterium avium complex infection. Human Immunology, 2012, 73, 529-536.	2.4	20
34	Circulating Levels of Adiponectin, Leptin, Fetuin-A and Retinol-Binding Protein in Patients with Tuberculosis: Markers of Metabolism and Inflammation. PLoS ONE, 2012, 7, e38703.	2.5	27
35	Association of IFNGR2 gene polymorphisms with pulmonary tuberculosis among the Vietnamese. Human Genetics, 2012, 131, 675-682.	3.8	24
36	Association of <i>TLR</i> polymorphisms with development of tuberculosis in Indonesian females. Tissue Antigens, 2012, 79, 190-197.	1.0	39

#	Article	IF	CITATIONS
37	Inter-rater agreement in the assessment of abnormal chest X-ray findings for tuberculosis between two Asian countries. BMC Infectious Diseases, 2012, 12, 31.	2.9	20
38	Association of CD209 polymorphisms with tuberculosis in an Indonesian population. Human Immunology, 2011, 72, 741-745.	2.4	22
39	Analysis of Factors Lowering Sensitivity of Interferon-Î ³ Release Assay for Tuberculosis. PLoS ONE, 2011, 6, e23806.	2.5	58
40	Genetic predisposition to diffuse panbronchiolitis. Respirology, 2011, 16, 581-588.	2.3	37
41	Decreased plasma granulysin and increased interferon-gamma concentrations in patients with newly diagnosed and relapsed tuberculosis. Microbiology and Immunology, 2011, 55, 565-573.	1.4	11
42	Molecular cloning of two novel mucin-like genes in the disease-susceptibility locus for diffuse panbronchiolitis. Human Genetics, 2011, 129, 117-128.	3.8	64
43	Identification of tuberculosis-associated proteins in whole blood supernatant. BMC Infectious Diseases, 2011, 11, 71.	2.9	29
44	A Case of Familial Pulmonary Mycobacterium avium Complex Disease. Internal Medicine, 2010, 49, 949-953.	0.7	3
45	Association analysis of susceptibility candidate region on chromosome 5q31 for tuberculosis. Genes and Immunity, 2010, 11, 416-422.	4.1	20
46	Prevalence and Risk Factors for Tuberculosis Infection among Hospital Workers in Hanoi, Viet Nam. PLoS ONE, 2009, 4, e6798.	2.5	48
47	Identification of <i>MICA </i> as a Susceptibility Gene for Pulmonary <i> Mycobacterium avium </i> Complex Infection. Journal of Infectious Diseases, 2009, 199, 1707-1715.	4.0	23
48	No evidence for association between the interferon regulatory factor 1 (IRF1) gene and clinical tuberculosis. Tuberculosis, 2009, 89, 71-76.	1.9	6
49	Quality assessment of an interferon-gamma release assay for tuberculosis infection in a resource-limited setting. BMC Infectious Diseases, 2009, 9, 66.	2.9	9
50	Genome-wide SNP-based linkage analysis of tuberculosis in Thais. Genes and Immunity, 2009, 10, 77-83.	4.1	49
51	Association of human leukocyte antigen class II alleles with severe acute respiratory syndrome in the Vietnamese population. Human Immunology, 2009, 70, 527-531.	2.4	99
52	Granulocyte/macrophage–colony-stimulating factor autoantibodies and myeloid cell immune functions in healthy subjects. Blood, 2009, 113, 2547-2556.	1.4	131
53	Granulocyte/macrophage-colony-stimulating factor autoantibodies and myeloid cell immune functions in healthy subjects. Blood, 2009, 113, 2547-2556.	1.4	80
54	HLAâ€A, â€B, â€C, â€DRB1 and â€DQB1 alleles and haplotypes in the Kinh population in Vietnam. Tissue Antigen 2008, 71, 127-134.	s, _{1.0}	70

#	Article	IF	CITATIONS
55	Safe and Convenient Fluorescent Stain Imager for Proteome Analysis. Current Proteomics, 2007, 4, 115-120.	0.3	O
56	Pulmonary Mycobacterium avium complex infection: association with NRAMP1 polymorphisms. European Respiratory Journal, 2007, 30, 90-96.	6.7	38
57	Protein C Deficiency in a Family with Thromboembolism and Identified Gene Mutations. Internal Medicine, 2007, 46, 997-1003.	0.7	12
58	Anti-cytokine autoantibodies are ubiquitous in healthy individuals. FEBS Letters, 2007, 581, 2017-2021.	2.8	91
59	A survey of tuberculosis prevalence in Hanoi, Vietnam. International Journal of Tuberculosis and Lung Disease, 2007, 11, 562-6.	1.2	22
60	Pulmonary Mycobacterium avium complex infection associated with the IVS8-T5 allele of the CFTR gene. International Journal of Tuberculosis and Lung Disease, 2007, 11, 808-13.	1.2	21
61	Epidemiological and clinical features of idiopathic pulmonary alveolar proteinosis in Japan. Respirology, 2006, 11, S55-S60.	2.3	38
62	Identification of an alternative 5′-untranslated exon and new polymorphisms of angiotensin-converting enzyme 2 gene: Lack of association with SARS in the Vietnamese population. American Journal of Medical Genetics, Part A, 2005, 136A, 52-57.	1.2	49
63	Variations of the CFTR gene in the Hanoi-Vietnamese. American Journal of Medical Genetics, Part A, 2005, 136A, 249-253.	1.2	13
64	Evaluation of microsatellite markers in association studies: a search for an immune-related susceptibility gene in sarcoidosis. Immunogenetics, 2005, 56, 861-870.	2.4	12
65	Promoter Analysis and Aberrant Expression of the MUC5BGene in Diffuse Panbronchiolitis. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 949-957.	5.6	64
66	Polymorphisms of interferon-inducible genes OAS-1 and MxA associated with SARS in the Vietnamese population. Biochemical and Biophysical Research Communications, 2005, 329, 1234-1239.	2.1	112
67	RAPID AWARENESS AND TRANSMISSION OF SEVERE ACUTE RESPIRATORY SYNDROME IN HANOI FRENCH HOSPITAL, VIETNAM. American Journal of Tropical Medicine and Hygiene, 2005, 73, 17-25.	1.4	57
68	Rapid awareness and transmission of severe acute respiratory syndrome in Hanoi French Hospital, Vietnam. American Journal of Tropical Medicine and Hygiene, 2005, 73, 17-25.	1.4	39
69	Assessment of synthetic peptides of severe acute respiratory syndrome coronavirus recognized by long-lasting immunity. Tissue Antigens, 2004, 64, 600-607.	1.0	15
70	Genome-wide linkage analysis of type 2 diabetes mellitus reconfirms the susceptibility locus on 11p13–p12 in Japanese. Journal of Human Genetics, 2004, 49, 629-634.	2.3	18
71	ACE1 polymorphism and progression of SARS. Biochemical and Biophysical Research Communications, 2004, 323, 1124-1129.	2.1	85
72	Direct determination of MUC5B promoter haplotypes based on the method of single-strand conformation polymorphism and their statistical estimation. Genomics, 2004, 84, 613-622.	2.9	10

#	Article	IF	CITATIONS
73	Diffuse Panbronchiolitis. Seminars in Respiratory and Critical Care Medicine, 2003, 24, 607-618.	2.1	18
74	High-affinity autoantibodies specifically eliminate granulocyte-macrophage colony-stimulating factor activity in the lungs of patients with idiopathic pulmonary alveolar proteinosis. Blood, 2003, 103, 1089-1098.	1.4	201
75	Adenoviral E1A modulates inflammatory mediator expression by lung epithelial cells exposed to PM ₁₀ . American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L290-L297.	2.9	19
76	Genotyping of Hepatitis E Virus from Vietnam. Intervirology, 2002, 45, 101-104.	2.8	23
77	Genetic Variants of Human \hat{I}^2 -Defensin-1 and Chronic Obstructive Pulmonary Disease. Biochemical and Biophysical Research Communications, 2002, 291, 17-22.	2.1	104
78	Diffuse Panbronchiolitis. Treatments in Respiratory Medicine, 2002, 1, 119-131.	1.2	88
79	Identification of novel candidate genes in the diffuse panbronchiolitis critical region of the class I human MHC. Immunogenetics, 2002, 54, 301-309.	2.4	30
80	Polymorphism of Human Leukocyte Antigen-E Gene in the Japanese Population with or without Recurrent Abortion. American Journal of Reproductive Immunology, 2001, 45, 168-173.	1.2	23
81	Association of Gc-globulin variation with susceptibility to COPD and diffuse panbronchiolitis. European Respiratory Journal, 2001, 18, 753-757.	6.7	62
82	Overestimated frequency of a possible emphysema-susceptibility allele when microsomal epoxide hydrolase is genotyped by the conventional polymerase chain reaction-based method. Journal of Human Genetics, 2001, 46, 96-98.	2.3	18
83	Human Alveolar Macrophages and Granulocyte-macrophage Colony-stimulating Factor-induced Monocyte-derived Macrophages Are Resistant to H2O2 via Their High Basal and Inducible Levels of Catalase Activity. Journal of Biological Chemistry, 2001, 276, 24360-24364.	3.4	44
84	Prolonged survival of a bare lymphocyte syndrome type I patient with diffuse panbronchiolitis treated with erythromycin. Sarcoidosis Vasculitis and Diffuse Lung Diseases, 2001, 18, 312-3.	0.2	11
85	Fine Localization of a Major Disease-Susceptibility Locus for Diffuse Panbronchiolitis. American Journal of Human Genetics, 2000, 66, 501-507.	6.2	72
86	Endotoxin-specific NF-κB activation in pulmonary epithelial cells harboring adenovirus E1A. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L523-L532.	2.9	25
87	Contribution of TAP genes to genetic predisposition for diffuse panbronchiolitis. Tissue Antigens, 1999, 53, 366-373.	1.0	11
88	Association of diffuse panbronchiolitis with microsatellite polymorphism of the human interleukin 8 (IL-8) gene. Journal of Human Genetics, 1999, 44, 169-172.	2.3	25
89	Promoter variation of tumour necrosis factor-alpha gene: possible high risk for chronic bronchitis but not diffuse panbronchiolitis. Respiratory Medicine, 1999, 93, 752-753.	2.9	5
90	Splice acceptor site mutation of the transporter associated with antigen processing-1 gene in human bare lymphocyte syndrome. Journal of Clinical Investigation, 1999, 103, 755-758.	8.2	53

#	Article	IF	CITATION
91	Effect of adenovirus E1A on ICAM-1 promoter activity in human alveolar and bronchial epithelial cells. Gene Expression, 1999, 8, 287-97.	1.2	10
92	Contribution of HLA Genes to Genetic Predisposition in Diffuse Panbronchiolitis. American Journal of Respiratory and Critical Care Medicine, 1998, 158, 846-850.	5.6	60
93	Identification of Glucocorticoid- and Adenovirus E1A-regulated Genes in Lung Epithelial Cells by Differential Display. American Journal of Respiratory Cell and Molecular Biology, 1998, 18, 243-254.	2.9	4
94	Adenovirus E1A gene dysregulates ICAM-1 expression in transformed pulmonary epithelial cells American Journal of Respiratory Cell and Molecular Biology, 1997, 16, 23-30.	2.9	52
95	A model of latent adenovirus 5 infection in the guinea pig (Cavia porcellus) American Journal of Respiratory Cell and Molecular Biology, 1996, 14, 225-231.	2.9	36
96	Erythromycin promotes monocyte to macrophage differentiation Journal of Antibiotics, 1994, 47, 80-89.	2.0	60
97	Detection of Lymphomatous Involvement of the Lung by Bronchoalveolar Lavage. Chest, 1994, 105, 458-462.	0.8	27
98	Antilymphocytic activity of erythromycin distinct from that of FK506 or cyclosporin A Journal of Antibiotics, 1993, 46, 1406-1413.	2.0	55
99	Effects of an immunosuppressant, FK506, on interleukin $1\hat{l}\pm$ production by human macrophages and a macrophage-like cell line, U937. Cellular Immunology, 1991, 132, 285-294.	3.0	37
100	Serum Concentration of Soluble Interleukin-2 Receptor as a Sensitive Parameter of Disease Activity in Sarcoidosis. Chest, 1990, 98, 1125-1129.	0.8	81
101	Phase II Study of UFT in Patients With Advanced Non-Small Cell Lung Cancer. Japanese Journal of Clinical Oncology, 1986, 16, 143-146.	1.3	45
102	A Case Report of a Three-Year Survivor with Advanced Non-Small Cell Lung Cancer Producing Alfa-Fetoprotein. Japanese Journal of Clinical Oncology, 1986, 16, 175-181.	1.3	11