
Denis Becquet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1548693/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct RNA–RNA interaction between Neat1 and RNA targets, as a mechanism for RNAs paraspeckle retention. RNA Biology, 2021, 18, 2016-2027.	3.1	8
2	Genome-wide screening of circadian and non-circadian impact of Neat1 genetic deletion. Computational and Structural Biotechnology Journal, 2021, 19, 2121-2132.	4.1	2
3	RNA Pull-down Procedure to Identify RNA Targets of a Long Non-coding RNA. Journal of Visualized Experiments, 2018, , .	0.3	39
4	Circadian processes in the RNA life cycle. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1467.	6.4	29
5	Paraspeckles as rhythmic nuclear mRNA anchorages responsible for circadian gene expression. Nucleus, 2017, 8, 249-254.	2.2	11
6	Circadian RNA expression elicited by 3'-UTR IRAlu-paraspeckle associated elements. ELife, 2016, 5, .	6.0	35
7	Structural plasticity of the circadian timing system. An overview from flies to mammals. Frontiers in Neuroendocrinology, 2015, 38, 50-64.	5.2	19
8	Evidence for an internal and functional circadian clock in rat pituitary cells. Molecular and Cellular Endocrinology, 2014, 382, 888-898.	3.2	14
9	Brainâ€derived neurotrophic factor/TrkB signaling regulates daily astroglial plasticity in the suprachiasmatic nucleus: Electronâ€microscopic evidence in mouse. Glia, 2013, 61, 1172-1177.	4.9	26
10	DNA Microarray Analysis and Functional Profile of Pituitary Transcriptome Under Core-Clock Protein BMAL1 Control. Chronobiology International, 2012, 29, 103-130.	2.0	16
11	Neuroglial and synaptic rearrangements associated with photic entrainment of the circadian clock in the suprachiasmatic nucleus. European Journal of Neuroscience, 2011, 33, 1561-1561.	2.6	0
12	Chromatin remodeling as a mechanism for circadian prolactin transcription: rhythmic NONO and SFPQ recruitment to HLTF. FASEB Journal, 2011, 25, 2740-2756.	0.5	36
13	Daily changes in synaptic innervation of VIP neurons in the rat suprachiasmatic nucleus: contribution of glutamatergic afferents. European Journal of Neuroscience, 2010, 31, 359-370.	2.6	40
14	Neuroglial and synaptic rearrangements associated with photic entrainment of the circadian clock in the suprachiasmatic nucleus. European Journal of Neuroscience, 2010, 32, 2133-2142.	2.6	38
15	Reply from Dr. G. Lucas and Dr. U. Spampinato. Journal of Neurochemistry, 2008, 75, 886-886.	3.9	22
16	Ultrastructural plasticity in the rat suprachiasmatic nucleus. Possible involvement in clock entrainment. Clia, 2008, 56, 294-305.	4.9	82
17	Nocturnal expression of phosphorylated-ERK1/2 in gastrin-releasing peptide neurons of the rat suprachiasmatic nucleus. Journal of Neurochemistry, 2007, 101, 1224-1235.	3.9	13
18	Vitamin A is a necessary factor for sympathetic- independent rhythmic activation of mitogen-activated protein kinase in the rat pineal gland. European Journal of Neuroscience, 2005, 21, 798-802.	2.6	9

DENIS BECQUET

#	Article	IF	CITATIONS
19	Influence of the Corticosterone Rhythm on Photic Entrainment of Locomotor Activity in Rats. Journal of Biological Rhythms, 2004, 19, 144-156.	2.6	73
20	Circadian Binding Activity of AP-1, a Regulator of the Arylalkylamine N-Acetyltransferase Gene in the Rat Pineal Gland, Depends on Circadian Fra-2, c-Jun, and Jun-D Expression and Is Regulated by the Clock's Zeitgebers. Journal of Neurochemistry, 2002, 75, 1398-1407.	3.9	28
21	Adrenergic inducibility of AP-1 binding in the rat pineal gland depends on prior photoperiod. Journal of Neurochemistry, 2002, 83, 157-166.	3.9	16
22	Long-term variations of AP-1 composition after CRH stimulation: consequence on POMC gene regulation. Molecular and Cellular Endocrinology, 2001, 175, 93-100.	3.2	18
23	Is light-regulated AP-1 binding in the rat suprachiasmatic nucleus gated by the circadian clock?. Molecular Brain Research, 2000, 85, 161-170.	2.3	2
24	Light-Induced Variations in AP-1 Binding Activity and Composition in the Rat Suprachiasmatic Nucleus. Journal of Neurochemistry, 1999, 72, 841-847.	3.9	13
25	Post-lesion up-regulation of 5-HT1B binding sites in the suprachiasmatic nucleus may be reversed after spontaneous or graft-induced serotonin reinnervation. Brain Research, 1998, 788, 332-336.	2.2	6
26	Serotonin directly stimulates luteinizing hormone-releasing hormone release from GT1-1 cells via 5-HT7 receptors. Endocrine, 1997, 7, 261-265.	2.2	33
27	Direct evidence for the link between monoaminergic descending pathways and motor activity. I. A study with microdialysis probes implanted in the ventral funiculus of the spinal cord. Brain Research, 1995, 704, 191-201.	2.2	94
28	Stimulatory Effects of 5HT _{1A} Receptor Agonists on Luteinizing Hormone-Releasing Hormone Release from Cultured Fetal Rat Hypothalamic Cells: Interactions with Progesterone. Neuroendocrinology, 1995, 61, 11-18.	2.5	12
29	Impairment of serotoninergic transmission is followed by adaptive changes in 5HT1B binding sites in the rat suprachiasmatic nucleus. Brain Research, 1994, 663, 93-100.	2.2	43
30	N-Methyl-d-Aspartic Acid/Glycine Interactions on the Control of 5-Hydroxytryptamine Release in Raphe Primary Cultures. Journal of Neurochemistry, 1993, 61, 1692-1697.	3.9	23
31	Glutamate, GABA, glycine and taurine modulate serotonin synthesis and release in rostral and caudal rhombencephalic raphe cells in primary cultures. Neurochemistry International, 1993, 23, 269-283.	3.8	40
32	Effect of Diabetes on in vivo and in vitro Hypothalamic Somatostatin Release. Neuroendocrinology, 1992, 55, 485-491.	2.5	20
33	Serotonin synthesis in adrenochromaffin cells. Neuroscience, 1992, 46, 495-500.	2.3	29
34	Striatal proenkephalin turnover and gene transcription are regulated by cyclic AMP and protein kinase c-related pathways. Neuroscience, 1991, 43, 67-79.	2.3	30
35	Population-specific modulation of 5-HT expression in cultures of embryonic rat rhombencephalon. Journal of Neuroscience Research, 1991, 29, 42-50.	2.9	4
36	Regulation of TRH release by the cultured neonate rat pancreas. Peptides, 1990, 11, 1081-1085.	2.4	8

DENIS BECQUET

#	Article	IF	CITATIONS
37	The role of serotonin release and autoreceptors in the dorsalis raphe nucleus in the control of serotonin release in the cat caudate nucleus. Neuroscience, 1990, 39, 639-647.	2.3	39
38	Serotonin synthesis from tryptophan by hypothalamic cells in serum-free medium culture. Developmental Brain Research, 1990, 54, 142-146.	1.7	8
39	In vivo evidence for an inhibitory glutamatergic control of serotonin release in the cat caudate nucleus: involvement of GABA neurons. Brain Research, 1990, 519, 82-88.	2.2	75
40	Effect of thalamic parafascicularis nucleus stimulation in regulation of serotoninergic transmission in the cat caudate nucleus: Involvement of autoreceptors in the dorsalis raphe nucleus. Neuroscience, 1989, 33, 293-300.	2.3	1
41	Effects of thalamic lesion on the bilateral regulation of serotoninergic transmission in rat basal ganglia. Journal of Neural Transmission, 1988, 74, 117-128.	2.8	10
42	In vivo evidence for acetylcholine control of serotonin release in the cat caudate nucleus: influence of halothane anaesthesia. Neuroscience, 1988, 27, 819-826.	2.3	12