Chenghang You

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1548450/publications.pdf

Version: 2024-02-01

28 1,307 16
papers citations h-index

28 28 28 2347 all docs docs citations times ranked citing authors

27

g-index

#	Article	IF	CITATIONS
1	Effect of Transition Metals on the Structure and Performance of the Doped Carbon Catalysts Derived From Polyaniline and Melamine for ORR Application. ACS Catalysis, 2014, 4, 3797-3805.	11.2	351
2	Binary Fe, Cu-doped bamboo-like carbon nanotubes as efficient catalyst for the oxygen reduction reaction. Nano Energy, 2017, 37, 187-194.	16.0	125
3	Phosphorus and Nitrogen Dual Doped and Simultaneously Reduced Graphene Oxide with High Surface Area as Efficient Metal-Free Electrocatalyst for Oxygen Reduction. Catalysts, 2015, 5, 981-991.	3.5	122
4	Uniform nitrogen and sulfur co-doped carbon nanospheres as catalysts for the oxygen reduction reaction. Carbon, 2014, 69, 294-301.	10.3	106
5	High-Performance Doped Carbon Catalyst Derived from Nori Biomass with Melamine Promoter. Electrochimica Acta, 2014, 138, 353-359.	5.2	83
6	Ruthenium nanoparticles mounted on multielement co-doped graphene: an ultra-high-efficiency cathode catalyst for Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 11224-11231.	10.3	61
7	Nitrogen, phosphorus and iron doped carbon nanospheres with high surface area and hierarchical porous structure for oxygen reduction. Journal of Power Sources, 2015, 288, 253-260.	7.8	55
8	Highly stable Pt ₃ Ni nanowires tailored with trace Au for the oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 26402-26409.	10.3	55
9	Conversion of polystyrene foam to a high-performance doped carbon catalyst with ultrahigh surface area and hierarchical porous structures for oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 12240-12246.	10.3	52
10	Uniform nitrogen and sulphur co-doped hollow carbon nanospheres as efficient metal-free electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 1742-1748.	10.3	51
11	Nitrogen, Sulfur Co-doped Carbon Derived from Naphthalene-Based Covalent Organic Framework as an Efficient Catalyst for Oxygen Reduction. ACS Applied Energy Materials, 2018, 1, 161-166.	5.1	36
12	Fog-like fluffy structured N-doped carbon with a superior oxygen reduction reaction performance to a commercial Pt/C catalyst. Nanoscale, 2015, 7, 3780-3785.	5.6	34
13	High porosity and surface area self-doped carbon derived from polyacrylonitrile as efficient electrocatalyst towards oxygen reduction. Journal of Power Sources, 2016, 324, 134-141.	7.8	31
14	A one-pot method to synthesize high performance multielement co-doped reduced graphene oxide catalysts for oxygen reduction. Electrochemistry Communications, 2014, 47, 49-53.	4.7	22
15	Doped reduced graphene oxide mounted with IrO2 nanoparticles shows significantly enhanced performance as a cathode catalyst for Li-O2 batteries. Electrochimica Acta, 2016, 192, 431-438.	5.2	20
16	Rechargeable Zinc–Air Battery with Ultrahigh Power Density Based on Uniform N, Co Codoped Carbon Nanospheres. ACS Applied Materials & Interfaces, 2019, 11, 44153-44160.	8.0	20
17	An ultra high performance multi-element doped mesoporous carbon catalyst derived from poly(4-vinylpyridine). Journal of Materials Chemistry A, 2015, 3, 23512-23519.	10.3	16
18	Uniform Nitrogen and Sulfur Co-doped Carbon Bowls for the Electrocatalyzation of Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 7148-7154.	6.7	13

#	Article	IF	CITATIONS
19	High porosity nitrogen and phosphorous Co-doped carbon nanosheets as an efficient catalyst for oxygen reduction. International Journal of Hydrogen Energy, 2018, 43, 9749-9756.	7.1	12
20	A mesoporous carbon derived from 4,4′-dipyridyl iron as an efficient catalyst for oxygen reduction. Journal of Materials Chemistry A, 2020, 8, 2439-2444.	10.3	12
21	Synthesis of three-dimensional Pd nanospheres decorated with a Pt monolayer for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2014, 39, 14018-14026.	7.1	11
22	A novel crystal-modified electrode based on polyoxometalate (Bu4N)4PW11O39FeIII (H2O) for electrocatalysis. Journal of Solid State Electrochemistry, 2018, 22, 237-243.	2. 5	9
23	Coconut-based bacterial cellulose carbon nanofibers. Materials Research Innovations, 2017, 21, 91-96.	2.3	3
24	Preparation of urchin-like NiCo ₂ O ₄ material and studies of its electrochemical performance for supercapacitors. Functional Materials Letters, 2019, 12, 1950026.	1.2	3
25	Metallic cobalt encapsulated in N-doped carbon nanowires: a highly active bifunctional catalyst for oxygen reduction and evolution. Ionics, 2021, 27, 3501-3509.	2.4	2
26	A Novel Crystal Modified Electrode Based on Cs ₄ PW ₁₁ Fe: Comparative Study of Its Electrochemical Behavior and Electrocatalysis. Journal of the Electrochemical Society, 2020, 167, 066511.	2.9	1
27	Multi-doped carbon derived from notoginseng as a high-performance catalyst for oxygen reduction. lonics, 2021, 27, 2537-2544.	2.4	1
28	Co3O4 nanofiber as a high-performance electrocatalyst for oxygen evolution. Ionics, 0, , .	2.4	0