Claudio Shyinti Kiminami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1548196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Corrosion resistance of Fe-Cr-based amorphous alloys: An overview. Journal of Non-Crystalline Solids, 2016, 442, 56-66.	1.5	163
2	Microstructure and wear behavior of Fe-based amorphous HVOF coatings produced from commercial precursors. Surface and Coatings Technology, 2017, 309, 938-944.	2.2	92
3	Corrosion resistance of Fe-based amorphous alloys. Journal of Alloys and Compounds, 2014, 586, S105-S110.	2.8	90
4	Nanoscale Grain Refinement and Hâ€5orption Properties of MgH ₂ Processed by Highâ€Pressure Torsion and Other Mechanical Routes. Advanced Engineering Materials, 2010, 12, 786-792.	1.6	82
5	Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting. Additive Manufacturing, 2016, 11, 23-31.	1.7	80
6	Topological instability as a criterion for design and selection of aluminum-based glass-former alloys. Applied Physics Letters, 2005, 86, 211904.	1.5	72
7	Microstructure evolution and mechanical properties of Al–Zn–Mg–Cu alloy reprocessed by spray-forming and heat treated at peak aged condition. Journal of Alloys and Compounds, 2013, 579, 169-173.	2.8	67
8	High Throughput Discovery and Design of Strong Multicomponent Metallic Solid Solutions. Scientific Reports, 2018, 8, 8600.	1.6	67
9	Mechanical activation of TiFe for hydrogen storage by cold rolling under inert atmosphere. International Journal of Hydrogen Energy, 2018, 43, 2913-2918.	3.8	66
10	Correlation between hydrogen storage properties and textures induced in magnesium through ECAP and cold rolling. International Journal of Hydrogen Energy, 2014, 39, 3810-3821.	3.8	63
11	Formation of Fe-based glassy matrix composite coatings by laser processing. Surface and Coatings Technology, 2014, 240, 336-343.	2.2	56
12	Nanostructured MgH2 prepared by cold rolling and cold forging. Journal of Alloys and Compounds, 2011, 509, S444-S448.	2.8	54
13	Corrosion properties of Fe–Cr–Nb–B amorphous alloys and coatings. Surface and Coatings Technology, 2014, 254, 238-243.	2.2	53
14	Consolidation of partially amorphous aluminium-alloy powders by severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 936-941.	2.6	50
15	Magnetic properties evaluation of spray formed and rolled Fe–6.5wt.% Si–1.0wt.% Al alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 375-377.	2.6	48
16	Magnetic properties of spray-formed Fe–6.5%Si and Fe–6.5%Si–1.0%Al after rolling and heat treatment. Journal of Magnetism and Magnetic Materials, 2008, 320, e653-e656.	1.0	48
17	Partial crystallization and corrosion resistance of amorphous Fe-Cr-M-B (M=Mo, Nb) alloys. Journal of Non-Crystalline Solids, 2010, 356, 2651-2657.	1.5	44
18	Corrosion resistance of amorphous and polycrystalline FeCuNbSiB alloys in sulphuric acid solution.	1.5	43

#	Article	IF	CITATIONS
19	Sliding wear of spray-formed high-chromium white cast iron alloys. Wear, 2005, 259, 445-452.	1.5	42
20	Formation, stability and ultrahigh strength of novel nanostructured alloys by partial crystallization of high-entropy (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86‒89B11‒14 amorphous phase. Acta Materialia, 202 170, 50-61.	193.8	42
21	Corrosion and wear properties of FeCrMnCoSi HVOF coatings. Surface and Coatings Technology, 2019, 357, 993-1003.	2.2	42
22	Effect of boron addition on the solidification sequence and microstructure of AlCoCrFeNi alloys. Journal of Alloys and Compounds, 2019, 775, 1235-1243.	2.8	42
23	Laser surface remelting of a Cu-Al-Ni-Mn shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 661, 61-67.	2.6	41
24	Mg-Zn-Ca amorphous alloys for application as temporary implant: Effect of Zn content on the mechanical and corrosion properties. Materials and Design, 2016, 110, 188-195.	3.3	41
25	Kinetics of crystal nucleation and growth in Pd77.5Cu6Si16.5 glass. Acta Metallurgica, 1986, 34, 2129-2137.	2.1	40
26	Microstructure and mechanical properties of spray deposited hypoeutectic Al–Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 577-580.	2.6	40
27	Hydrogen storage properties of pure Mg after the combined processes of ECAP and cold-rolling. Journal of Alloys and Compounds, 2014, 586, S405-S408.	2.8	40
28	Degradation of biodegradable implants: The influence of microstructure and composition of Mg-Zn-Ca alloys. Journal of Alloys and Compounds, 2019, 774, 168-181.	2.8	40
29	Crystallization and corrosion resistance of amorphous FeCuNbSiB. Journal of Non-Crystalline Solids, 1997, 219, 155-159.	1.5	39
30	Wear resistant coatings of boron-modified stainless steels deposited by Plasma Transferred Arc. Surface and Coatings Technology, 2016, 302, 255-264.	2.2	38
31	Glass forming ability of the Al–Ce–Ni system. Journal of Non-Crystalline Solids, 2008, 354, 4874-4877.	1.5	37
32	Topological instability and electronegativity effects on the glass-forming ability of metallic alloys. Philosophical Magazine Letters, 2008, 88, 785-791.	0.5	36
33	Phase Formation, Thermal Stability and Mechanical Properties of a Cu-Al-Ni-Mn Shape Memory Alloy Prepared by Selective Laser Melting. Materials Research, 2015, 18, 35-38.	0.6	36
34	Microstructural investigation of Fe Cr Nb B amorphous/nanocrystalline coating produced by HVOF. Materials and Design, 2016, 111, 608-615.	3.3	36
35	Corrosion properties of amorphous, partially, and fully crystallized Fe68Cr8Mo4Nb4B16 alloy. Journal of Alloys and Compounds, 2020, 826, 154123.	2.8	36
36	Phases formed during crystallization of amorphous Al84Y9Ni5Co2 alloy. Journal of Non-Crystalline Solids, 2000, 273, 271-276.	1.5	35

#	Article	IF	CITATIONS
37	Amorphous phase formation in spray deposited AlYNiCo and AlYNiCoZr alloys. Scripta Materialia, 2001, 44, 1625-1628.	2.6	35
38	Reassessment of the effects of Ce on quasicrystal formation and microstructural evolution in rapidly solidified Al–Mn alloys. Acta Materialia, 2015, 98, 221-228.	3.8	35
39	Design of wear resistant boron-modified supermartensitic stainless steel by spray forming process. Materials and Design, 2015, 83, 214-223.	3.3	35
40	Crystallisation behaviours of Al-based metallic glasses: Compositional and topological aspects. Journal of Alloys and Compounds, 2009, 483, 89-93.	2.8	34
41	Spray forming of Cu–11.85Al–3.2Ni–3Mn (wt%) shape memory alloy. Journal of Alloys and Compounds, 2014, 615, S602-S606.	2.8	34
42	Crystallization behavior of amorphous Al84Y9Ni5Co2 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 332-337.	2.6	33
43	Atomization and Selective Laser Melting of a Cu-Al-Ni-Mn Shape Memory Alloy. Materials Science Forum, 0, 802, 343-348.	0.3	33
44	Challenges in optimizing the resistance to corrosion and wear of amorphous Fe-Cr-Nb-B alloy containing crystalline phases. Journal of Non-Crystalline Solids, 2021, 555, 120537.	1.5	33
45	Room temperature hydrogen absorption by Mg andÂMg TiFe nanocomposites processed by high-energy ball milling. International Journal of Hydrogen Energy, 2018, 43, 12251-12259.	3.8	32
46	Influence of the corrosion on the saturation magnetic density of amorphous and nanocrystalline Fe73Nb3Si15.5B7.5Cu1 and Fe80Zr3.5Nb3.5B12Cu1 alloys. Journal of Non-Crystalline Solids, 2002, 304, 210-216.	1.5	31
47	Recent developments on fabrication of Alâ€matrix composites reinforced with quasicrystals: From metastable to conventional processing. Journal of Materials Research, 2021, 36, 281-297.	1.2	31
48	Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1 alloy. Journal of Non-Crystalline Solids, 2001, 284, 134-138.	1.5	30
49	Topological Instability as a Criterion for Design and Selection of Easy Glass-Former Compositions in Cu-Zr Based Systems. Materials Transactions, 2007, 48, 1739-1742.	0.4	29
50	Thermodynamic analysis of the effect of annealing on the thermal stability of a Cu–Al–Ni–Mn shape memory alloy. Thermochimica Acta, 2015, 608, 1-6.	1.2	29
51	Evolution of the texture of spray-formed Fe–6.5wt.% Si–1.0wt.% Al alloy during warm-rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 854-857.	2.6	28
52	Microstructural characterization of a laser remelted coating of Al91Fe4Cr3Ti2 quasicrystalline alloy. Scripta Materialia, 2009, 61, 709-712.	2.6	28
53	Production and Corrosion Resistance of Thermally Sprayed Fe-Based Amorphous Coatings from Mechanically Milled Feedstock Powders. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4860-4870.	1.1	28
54	Microstructure and wear resistance of spray formed high chromium white cast iron. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 589-594.	2.6	27

#	Article	IF	CITATIONS
55	Processing of Al matrix composites reinforced with Al–Ni compounds and Al2O3 by reactive milling and reactive sintering. Journal of Alloys and Compounds, 2009, 471, 448-452.	2.8	27
56	Enhancement of Mechanical Properties of Aluminum and 2124 Aluminum Alloy by the Addition of Quasicrystalline Phases. Materials Research, 2016, 19, 74-79.	0.6	27
57	Phase transformation and shape memory effect of a Cu-Al-Ni-Mn-Nb high temperature shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 663, 64-68.	2.6	27
58	Structural, mechanical and thermal characterization of an Al-Co-Fe-Cr alloy for wear and thermal barrier coating applications. Surface and Coatings Technology, 2017, 319, 241-248.	2.2	27
59	Effect of cold rolling on the structure and hydrogen properties of AZ91 and AM60D magnesium alloys processed by ECAP. International Journal of Hydrogen Energy, 2017, 42, 21822-21831.	3.8	27
60	Fabrication of Al-matrix composite reinforced with quasicrystals using conventional metallurgical fabrication methods. Scripta Materialia, 2019, 173, 21-25.	2.6	26
61	Phases formed during crystallization of Zr55Al10Ni5Cu30 metallic glass containing oxygen. Journal of Non-Crystalline Solids, 2002, 304, 51-55.	1.5	25
62	Topological instability, average electronegativity difference and glass forming ability of amorphous alloys. Intermetallics, 2009, 17, 183-185.	1.8	25
63	Microstructure study of Al 7050 alloy reprocessed by spray forming and hot-extrusion and aged at 121°C. Intermetallics, 2013, 43, 182-187.	1.8	25
64	Severely deformed ZK60Â+Â2.5% Mm alloy for hydrogen storage produced by two different processing routes. International Journal of Hydrogen Energy, 2016, 41, 11284-11292.	3.8	25
65	Hydrogen storage in MgH2LaNi5 composites prepared by cold rolling under inert atmosphere. International Journal of Hydrogen Energy, 2018, 43, 13348-13355.	3.8	25
66	Challenges in the Development of Aluminium-Based Bulk Amorphous Alloys. Key Engineering Materials, 2001, 189-191, 503-508.	0.4	24
67	Nanoquasicrystalline Al–Fe–Cr–Nb alloys produced by powder metallurgy. Journal of Alloys and Compounds, 2013, 577, 650-657.	2.8	24
68	Processing and characterization of amorphous magnesium based alloy for application in biomedical implants. Journal of Materials Research and Technology, 2014, 3, 203-209.	2.6	24
69	Wear and corrosion properties of HVOF coatings from Superduplex alloy modified with addition of boron. Surface and Coatings Technology, 2017, 309, 911-919.	2.2	24
70	The formation of quasicrystals in Al-Cu-Fe-(M=Cr,Ni) melt-spun ribbons. Journal of Alloys and Compounds, 2018, 731, 1288-1294.	2.8	24
71	Processing a biocompatible Ti–35Nb–7Zr–5Ta alloy by selective laser melting. Journal of Materials Research, 2020, 35, 1143-1153.	1.2	24
72	Single step fabrication by spray forming of large volume Al-based composites reinforced with quasicrystals. Scripta Materialia, 2020, 181, 86-91.	2.6	24

#	Article	IF	CITATIONS
73	Spray forming of glass former Fe63Nb10Al4Si3B20 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 884-889.	2.6	23
74	Severe plastic deformation of Mg-Fe powders to produce bulk hydrides. Journal of Physics: Conference Series, 2009, 144, 012015.	0.3	23
75	Hydrogen storage in heavily deformed ZK60 alloy modified with 2.5Âwt.% Mm addition. International Journal of Hydrogen Energy, 2016, 41, 4177-4184.	3.8	23
76	Application of mathematical simulation and the factorial design method to the optimization of the atomization stage in the spray forming of a Cu–6% Zn alloy. Journal of Materials Processing Technology, 2000, 102, 221-229.	3.1	22
77	Wear-resistant boride reinforced steel coatings produced by non-vacuum electron beam cladding. Surface and Coatings Technology, 2020, 386, 125466.	2.2	22
78	Characterization of hydrogen storage properties of Mg-Fe-CNT composites prepared by ball milling, hot-extrusion and severe plastic deformation methods. International Journal of Hydrogen Energy, 2016, 41, 23092-23098.	3.8	21
79	Amorphous phase formation in Fe-6.0wt%Si alloy by mechanical alloying. Scripta Materialia, 1999, 42, 213-217.	2.6	20
80	Influence of composition and partial crystallization on corrosion resistance of amorphous Fe–M–B–Cu (M=Zr, Nb, Mo) alloys. Journal of Non-Crystalline Solids, 2001, 284, 99-104.	1.5	20
81	Wear and Corrosion Performance of Al-Cu-Fe-(Cr) Quasicrystalline Coatings Produced by HVOF. Journal of Thermal Spray Technology, 2020, 29, 1195-1207.	1.6	20
82	Microstructure and mechanical properties of spray deposited and extruded/heat treated hypoeutectic Al–Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 850-853.	2.6	19
83	Laser remelting of Al91Fe4Cr3Ti2 quasicrystalline phase former alloy. Journal of Alloys and Compounds, 2010, 495, 646-649.	2.8	19
84	Microstructural characterization and hydrogenation study of extruded MgFe alloy. Journal of Alloys and Compounds, 2010, 504, S299-S301.	2.8	19
85	2Mg–Fe alloys processed by hot-extrusion: Influence of processing temperature and the presence of MgO and MgH2 on hydrogenation sorption properties. Journal of Alloys and Compounds, 2011, 509, S460-S463.	2.8	19
86	Ordered phases and texture in spray-formed Fe–5wt%Si. Journal of Alloys and Compounds, 2011, 509, S260-S264.	2.8	19
87	Predicting the Formation of Intermetallic Phases in the Al-Si-Fe System with Mn Additions. Journal of Phase Equilibria and Diffusion, 2017, 38, 298-304.	0.5	19
88	Improved ball milling method for the synthesis of nanocrystalline TiFe compound ready to absorb hydrogen. International Journal of Hydrogen Energy, 2020, 45, 2084-2093.	3.8	19
89	Design of a FeMnAlC steel with TWIP effect and evaluation of its tensile and fatigue properties. Journal of Alloys and Compounds, 2020, 831, 154806.	2.8	19
90	An amorphous core transformer: design and experimental performance. Materials Science & Amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 1079-1082.	2.6	18

Claudio Shyinti Kiminami

#	Article	IF	CITATIONS
91	Outâ€ofâ€Plane Magnetic Patterning Based on Indentationâ€Induced Nanocrystallization of a Metallic Glass. Small, 2010, 6, 1543-1549.	5.2	18
92	Microstructure and mechanical properties of Al–Si–Mg ribbons. Journal of Alloys and Compounds, 2010, 495, 386-390.	2.8	18
93	Improving the glass-forming ability and plasticity of a TiCu-based bulk metallic glass composite by minor additions of Si. Journal of Alloys and Compounds, 2016, 663, 531-539.	2.8	18
94	Characterization and Corrosion Resistance of Boron-Containing-Austenitic Stainless Steels Produced by Rapid Solidification Techniques. Materials, 2018, 11, 2189.	1.3	18
95	Changing the solidification sequence and the morphology of iron-containing intermetallic phases in AA6061 aluminum alloy processed by spray forming. Materials Characterization, 2018, 145, 507-515.	1.9	18
96	Phase transformation in Nb—16 at.% Si processed by high-energy ball milling. Journal of Non-Crystalline Solids, 1997, 219, 170-175.	1.5	17
97	Growth and microstructural characterization of SnSe-SnSe2 composite. Journal of Materials Science, 1999, 34, 4607-4612.	1.7	17
98	Primary crystallization in amorphous Al84Ni8Co4Y3Zr1 alloy. Journal of Non-Crystalline Solids, 2002, 304, 36-43.	1.5	17
99	Crystallisation behaviour and glass-forming ability in Al–La–Ni system. Journal of Alloys and Compounds, 2010, 495, 334-337.	2.8	17
100	Design and in-situ characterization of a strong and ductile co-rich multicomponent alloy with transformation induced plasticity. Scripta Materialia, 2019, 173, 70-74.	2.6	17
101	Formation and stability of complex metallic phases including quasicrystals explored through combinatorial methods. Scientific Reports, 2019, 9, 7136.	1.6	17
102	Design and production of Al-Mn-Ce alloys with tailored properties. Materials and Design, 2016, 110, 436-448.	3.3	16
103	Effect of Cr addition on the formation of the decagonal quasicrystalline phase of a rapidly solidified Al-Ni-Co alloy. Journal of Alloys and Compounds, 2017, 707, 41-45.	2.8	16
104	Processing of MgH2 by extensive cold rolling under protective atmosphere. International Journal of Hydrogen Energy, 2017, 42, 2201-2208.	3.8	16
105	Tailoring the microstructure of recycled 319 aluminum alloy aiming at high ductility. Journal of Materials Research and Technology, 2019, 8, 3539-3549.	2.6	16
106	Undercoolability of copper bulk samples. Journal of Materials Science Letters, 1989, 8, 1416-1417.	0.5	15
107	Microstructure of under-cooled Sn–Bi and Al–Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 473-478.	2.6	15
108	Microstructure and Magnetic Properties of Fe-6.5wt%Si Alloy Obtained by Spray Forming Process. Materials Science Forum, 2005, 498-499, 111-118.	0.3	15

7

Claudio Shyinti Kiminami

#	Article	IF	CITATIONS
109	Hydrogen Activation Behavior of Commercial Magnesium Processed by Different Severe Plastic Deformation Routes. Materials Science Forum, 2010, 667-669, 1047-1051.	0.3	15
110	Microstructural characterization of Ti-6Al-7Nb alloy after severe plastic deformation. Materials Research, 2012, 15, 786-791.	0.6	15
111	Assessing technological developments in amorphous/glassy metallic alloys using patent indicators. Journal of Alloys and Compounds, 2017, 716, 330-335.	2.8	15
112	Effect of iron on the microstructure and mechanical properties of the spray-formed and rotary-swaged 319 aluminum alloy. International Journal of Advanced Manufacturing Technology, 2019, 102, 3879-3894.	1.5	15
113	Designing new quasicrystalline compositions in Al-based alloys. Journal of Alloys and Compounds, 2020, 823, 153765.	2.8	15
114	Formation, thermal stability and mechanical properties of high-entropy (Fe0.25Co0.25Ni0.25Cr0.125Mo0.0625Nb0.0625)100‒Bx (xÂ= 7–14) amorphous alloys. Journal of Alloys an Compounds, 2020, 825, 153858.	d2.8	15
115	Microstructure and wear resistance of spray-formed supermartensitic stainless steel. Materials Research, 2013, 16, 642-646.	0.6	15
116	Consolidation of Partially Amorphous Al-Fe-Zr Alloys. Materials Science Forum, 2002, 386-388, 33-38.	0.3	14
117	Electromechanical shaping, assembly and engraving of bulk metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 227-234.	2.6	14
118	Spray forming of the glass former Fe83Zr3.5Nb3.5B9Cu1 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 571-576.	2.6	14
119	Microstructure and metastable phase formation in a rapidly solidified Ni–Si eutectic alloy using a melt-spinning technique. Journal of Alloys and Compounds, 2004, 381, 72-76.	2.8	14
120	The role of yttrium and oxygen on the crystallization behavior of a Cu–Zr–Al metallic glass. Journal of Non-Crystalline Solids, 2014, 406, 79-87.	1.5	14
121	Hydrogen storage properties of 2Mg–Fe after the combined processes of hot extrusion and cold rolling. Journal of Alloys and Compounds, 2014, 586, S409-S412.	2.8	14
122	Insight into the complex ternary phase behavior in Al-Mn-Ce alloys. Journal of Alloys and Compounds, 2017, 727, 460-468.	2.8	14
123	Wear Resistant Duplex Stainless Steels Produced by Spray Forming. Metals and Materials International, 2019, 25, 456-464.	1.8	14
124	Corrosion resistant and tough multi-principal element Cr-Co-Ni alloys. Journal of Alloys and Compounds, 2021, 884, 161107.	2.8	14
125	Microstructure of undercooled Pb–Sn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 255-261.	2.6	13
126	Mechanical behavior under nanoindentation of a new Ni-based glassy alloy produced by melt-spinning and copper mold casting. Journal of Non-Crystalline Solids, 2010, 356, 2251-2257.	1.5	13

#	Article	IF	CITATIONS
127	Amorphous phase formation by spray forming of alloys [(Fe0.6Co0.4)0.75B0.2Si0.05]96Nb4 and Fe66B30Nb4 modified with Ti. Journal of Alloys and Compounds, 2011, 509, S148-S154.	2.8	13
128	Microstructure formation and abrasive wear resistance of a boron-modified superduplex stainless steel produced by spray forming. Journal of Materials Research, 2016, 31, 2987-2993.	1.2	13
129	In-situ crystallization of amorphous Fe73â^'xNbxAl4Si3B20 alloys through synchrotron radiation. Journal of Non-Crystalline Solids, 2006, 352, 3404-3409.	1.5	12
130	Selection of good glass former compositions in Ni–Ti system using a combination of topological instability and thermodynamic criteria. Journal of Non-Crystalline Solids, 2008, 354, 1932-1935.	1.5	12
131	Electrochemical Corrosion Behavior of Spray-Formed Boron-Modified Supermartensitic Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 2077-2089.	1.1	12
132	Wear Resistance of Boron-Modified Supermartensitic Stainless Steel Coatings Produced by High-Velocity Oxygen Fuel Process. Journal of Thermal Spray Technology, 2019, 28, 2003-2014.	1.6	12
133	Ultrafine eutectic coatings from Fe-Nb-B powder using laser cladding. Materials Characterization, 2020, 160, 110080.	1.9	12
134	Characterization, corrosion resistance and hardness of rapidly solidified Ni–Nb alloys. Journal of Alloys and Compounds, 2020, 829, 154529.	2.8	12
135	Effect of oxide particles on the crystallisation behaviour of Zr55Al10Ni5Cu30 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 665-669.	2.6	11
136	Microstructure and mechanical properties of spray co-deposited Al–8.9wt.% Si–3.2wt.% Cu–0.9wt.% Fe+(Al–3wt.% Mn–4wt.% Si)p composite. Journal of Alloys and Compounds, 2007, 434-435, 371-374.	2.8	11
137	Thermodynamic and topological instability approaches for forecasting glass-forming ability in the ternary Al–Ni–Y system. Journal of Alloys and Compounds, 2008, 464, 118-121.	2.8	11
138	Prediction of good glass formers in the Al-Ni-La and Al-Ni-Gd systems using topological instability and electronegativity. Journal of Applied Physics, 2011, 109, .	1.1	11
139	An assessment of microstructure and properties of laser clad coatings of ultrafine eutectic \hat{l}^2 Ti-Fe-Nb-Sn composite for implants. Surface and Coatings Technology, 2017, 328, 161-171.	2.2	11
140	On the valence electron theory to estimate the transformation temperatures of Cu–Al-based shape memory alloys. Journal of Materials Research, 2017, 32, 3165-3174.	1.2	11
141	Comparison of Cu–Al–Ni–Mn–Zr shape memory alloy prepared by selective laser melting and conventional powder metallurgy. Transactions of Nonferrous Metals Society of China, 2020, 30, 3322-3332.	1.7	11
142	Reactive Milling and Sintering of Nb-16at.% Si Mixtures. Materials Science Forum, 1997, 235-238, 151-156.	0.3	10
143	Directional and rapid solidification of Al–Nb–Ni ternary eutectic alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 565-570.	2.6	10
144	Rapidly solidified Al92Fe3Cr2Mn3 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 1057-1061.	2.6	10

#	Article	IF	CITATIONS
145	Evaluation of glass forming ability in the Ni–Nb–Zr alloy system by the topological instability (λ) criterion. Journal of Alloys and Compounds, 2010, 495, 313-315.	2.8	10
146	Glass formation of alloys selected by lambda and electronegativity criteria in the Ti–Zr–Fe–Co system. Journal of Alloys and Compounds, 2010, 495, 316-318.	2.8	10
147	Effect of dislocations and residual stresses on the martensitic transformation of Cu-Al-Ni-Mn shape memory alloy powders. Journal of Alloys and Compounds, 2017, 723, 841-849.	2.8	10
148	Oligocrystalline microstructure in an additively manufactured biocompatible Ti-Nb-Zr-Ta alloy. Materials Letters, 2020, 262, 127149.	1.3	10
149	Effects of pressure on the solidification of Al–Mn alloy. Journal of Materials Research, 2001, 16, 910-913.	1.2	9
150	Hot Extrusion of Nanostructured Al-Powder Alloys: Grain Growth Control and the Effect of Process Parameters on Their Microstructure and Mechanical Properties. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 3314-3321.	1.1	9
151	Processing of glass former alloys by spray forming. Materialwissenschaft Und Werkstofftechnik, 2010, 41, 513-523.	0.5	9
152	Topological instability and glass forming ability of Al–Ni–Sm alloys. Journal of Alloys and Compounds, 2011, 509, S141-S144.	2.8	9
153	Hydrogen storage properties of 2Mg–Fe mixtures processed by hot extrusion: Influence of the extrusion ratio. International Journal of Hydrogen Energy, 2012, 37, 15196-15203.	3.8	9
154	Ultrafine-Grained Ti-13Nb-13Zr Alloy Produced by Severe Plastic Deformation. Materials Research, 2017, 20, 404-410.	0.6	9
155	Metallic Glass Formation Upon Rapid Solidification of Fe60Cr8Nb8B24 (at%) Alloy through LASER Cladding and Remelting. Materials Research, 2017, 20, 580-587.	0.6	9
156	Resistance upset welding of Zr-based bulk metallic glasses. Journal of Materials Processing Technology, 2018, 255, 760-764.	3.1	9
157	The Influence of Sintering Parameters in the Microstructure and Mechanical Properties of a Cu–Al–Ni–Mn–Zr Shape Memory Alloy. Advanced Engineering Materials, 2018, 20, 1800372.	1.6	9
158	Microstructure and mechanical behavior of Al92Fe3Cr2X3 (X = Ce, Mn, Ti, and V) alloys processed by centrifugal force casting. Journal of Materials Research and Technology, 2019, 8, 2092-2097.	2.6	9
159	Functionally graded aluminum reinforced with quasicrystal approximant phases – Improving the wear resistance at high temperatures. Wear, 2020, 462-463, 203507.	1.5	9
160	New compositions of Fe–Co–Nb–B–Y BMG with wide supercooled liquid range, over 100 K. Journal of Materials Research and Technology, 2020, 9, 9174-9181.	2.6	9
161	Hall–Petch and grain growth kinetics of the low stacking fault energy TRIP Cr40Co40Ni20 multi-principal element alloy. Applied Physics Letters, 2021, 119, .	1.5	9
162	Strong and ductile recycled Al-7Si-3Cu-1Fe alloy: Controlling the morphology of quasicrystal approximant α-phase by Mn and V addition. Journal of Alloys and Compounds, 2021, 888, 161508.	2.8	9

#	Article	IF	CITATIONS
163	Single phase 1-kVA amorphous core transformer: design, experimental tests, and performance after annealing. IEEE Transactions on Magnetics, 1999, 35, 2152-2154.	1.2	8
164	Nanostructured Al ₈₉ Fe ₁₀ Zr ₁ Alloy Obtained by Mechanical Alloying. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 183-188.	0.1	8
165	Rapid solidification of an Al-5Ni alloy processed by spray forming. Materials Research, 2012, 15, 779-785.	0.6	8
166	Microstructural evolution of Ti-6Al-7Nb alloy during high pressure torsion. Materials Research, 2012, 15, 792-795.	0.6	8
167	Thermodynamic Calculations for the Investigation of Phase Formation in Boron-Modified Ferritic Stainless Steel. Journal of Phase Equilibria and Diffusion, 2017, 38, 343-349.	0.5	8
168	Synthesis of β-Ti-Nb alloys from elemental powders by high-energy ball milling and their hydrogenation features. International Journal of Hydrogen Energy, 2018, 43, 18382-18391.	3.8	8
169	Outstanding Tensile Ductility in High Iron-Containing Al-Si-Cu Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2703-2710. Design, phase equilibria, and coarsening kinetics of a new combinath	1.1	8
170	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0004.svg"> <mml:mrow><mml:mi mathvariant="bold-italic">1³<mml:mo></mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="bold-italic">1³</mml:mi </mml:mrow><mml:mrow><mml:mrow><mml:mo accent="true">3€2</mml:mo </mml:mrow></mml:mrow></mml:msup></mml:mi </mml:mrow> precipitation-hardened	2.8	8
171	multi-principal element alloy. Journal of Alloys and Compounds, 2021, 882, 160729. Corrosion resistance of pseudo-high entropy Fe-containing amorphous alloys in chloride-rich media. Journal of Alloys and Compounds, 2021, 884, 161090.	2.8	8
172	Microstructure and properties of TiB2-reinforced Ti–35Nb–7Zr–5Ta processed by laser-powder bed fusion. Journal of Materials Research, 2022, 37, 259-271.	1.2	8
173	Influence of heterogeneous nuclei on the solidification of Pd77.5Cu6Si16.5 glassy alloy. Materials Science and Engineering, 1988, 97, 195-198.	0.1	7
174	Solidification of a supercooled Pd77.5Cu6Si16.5 bulk sample. Journal of Materials Science Letters, 1989, 8, 201-203.	0.5	7
175	Magnetic Properties of Spray Formed Fe-6.wt%Si Alloy. Key Engineering Materials, 2001, 189-191, 643-648.	0.4	7
176	Electromechanical engraving and writing on bulk metallic glasses. Applied Physics Letters, 2002, 81, 1606-1608.	1.5	7
177	Microstructure of undercooled SnSe–SnSe2 hypoeutectic alloy. Journal of Alloys and Compounds, 2004, 375, 142-146.	2.8	7
178	Correlation between heat- and deformation-induced crystallization of amorphous Al alloys. Philosophical Magazine Letters, 2008, 88, 863-870.	0.5	7
179	2Mg–Fe and 2Mg–Fe+5%C mixtures processed by hot extrusion: Influence of carbon on hydrogen sorption properties. Journal of Alloys and Compounds, 2011, 509, S464-S467.	2.8	7
180	Microstructural characterization of high-silicon iron alloys produced by spray forming and co-injection of Si particles. Journal of Alloys and Compounds, 2011, 509, S254-S259.	2.8	7

#	Article	IF	CITATIONS
181	Characterization of Glass Forming Alloy Fe _{43.2} Co _{28.8} B _{19.2} Si _{4.8} Nb ₄ Processed by Spray Forming and Wedge Mold Casting Techniques. Materials Science Forum, 2011, 691, 23-26.	0.3	7
182	Comparative study of nanoindentation on melt-spun ribbon and bulk metallic glass with Ni60Nb37B3 composition. Journal of Materials Research, 2013, 28, 2740-2746.	1.2	7
183	Hydrogen storage properties of 2Mg-Fe mixtures processed by hot extrusion at different temperatures. International Journal of Hydrogen Energy, 2017, 42, 11493-11500.	3.8	7
184	Processability of recycled quasicrystalline Al-Fe-Cr-Ti composites by selective laser melting - A statistical approach. Materialia, 2022, 22, 101377.	1.3	7
185	The Liquid Dynamic Compaction of a Zn-Al-Cu Alloy. Materials Science Forum, 1998, 299-300, 398-406.	0.3	6
186	Predicting glass-forming compositions in the Al–La and Al–La–Ni systems. Journal of Alloys and Compounds, 2011, 509, S170-S174.	2.8	6
187	Comparative study between two die cast methods for processing Cu–Zr–Al bulk metallic glasses. Journal of Materials Research and Technology, 2013, 2, 125-129.	2.6	6
188	Microstructure and Wear Behavior of High-Carbon Concentration CrCoNi Multi-principal Element Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3034-3050.	1.1	6
189	An Overview of Thermally Sprayed Fe-Cr-Nb-B Metallic Glass Coatings: From the Alloy Development to the Coating's Performance Against Corrosion and Wear. Journal of Thermal Spray Technology, 2022, 31, 923-955.	1.6	6
190	Microstructure of Spray Formed 2.9%C-22%Cr High Chromium White Cast Iron. Materials Science Forum, 2003, 416-418, 419-424.	0.3	5
191	In-Situ Observation of the Dissolution of Quasicrystalline Particles in an Aluminum Alloy during Annealing. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 382-387.	0.1	5
192	Effect of Dislocation Mechanisms during Extrusion of Nanostructured Aluminum Powder Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 3322-3330.	1.1	5
193	Formation and microstructure of Ni62- x Nb38Ti x (x = 3, 6, 10 at.%) bulk metallic glasses. International Journal of Materials Research, 2012, 103, 1096-1101.	0.1	5
194	Corrosion resistance and glass forming ability of Fe47Co7Cr15M9Si5B15Y2 (M=Mo, Nb) amorphous alloys. Materials Research, 2013, 16, 1294-1298.	0.6	5
195	Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys. Materials Characterization, 2016, 122, 76-82.	1.9	5
196	Consolidation of Fe-Based Metallic Glass Powders by Hot Pressing. Materials Research, 2019, 22, .	0.6	5
197	Microstructure, phase formation and properties of rapid solidified Al–Fe–Cr–Ti alloys. Materials Science and Technology, 2020, 36, 1205-1214.	0.8	5
198	Phase equilibria of VCrMnFeCo high entropy alloys. Journal of Alloys and Compounds, 2022, 903, 163950.	2.8	5

#	Article	IF	CITATIONS
199	Milling and Hot Consolidation of Al-Fe-Nb Alloy. Materials Science Forum, 2003, 416-418, 287-292.	0.3	4
200	Gas Atomization of Nanocrystalline Fe ₆₃ Nb ₁₀ Al ₄ Si ₃ B ₂₀ Alloy. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 175-182.	0.1	4
201	Microstructural characterization of spray formed Fe66B30Nb4 alloy. Journal of Alloys and Compounds, 2010, 495, 417-419.	2.8	4
202	Crystallization Behavior of Amorphous Ti51.1Cu38.9Ni10.0 Alloy. Materials Research, 2015, 18, 104-108.	0.6	4
203	The effect of oxygen on the microstructural evolution in crystallized Cu–Zr–Al metallic glasses. Intermetallics, 2015, 65, 51-55.	1.8	4
204	The Effect of Cr Content on the Glass Forming Ability of Fe68-xCrxNb8B24 (x =8,10,12) Alloys. Materials Research, 2016, 19, 92-96.	0.6	4
205	Experimental and thermodynamic investigation of the microstructural evolution of a boron-rich Fe-Cr-Nb-B alloy. Journal of Alloys and Compounds, 2017, 713, 119-124.	2.8	4
206	Influence of thermomechanical post-treatment on the corrosion behavior of Ni57Nb33Zr5Co5 bulk metallic glass. Materials Letters, 2021, 288, 129350.	1.3	4
207	Mechanical properties and yield strength modeling of a medium entropy alloy containing L12 precipitates. Journal of Alloys and Compounds, 2022, 898, 162923.	2.8	4
208	Temperature gradient at the solid—liquid interface in rapid directional solidification. Journal of Materials Science Letters, 1986, 5, 241-243.	0.5	3
209	Heterogeneous Nucleation Behavior in Undercooled Sn–Bi Alloys. Journal of Materials Science Letters, 1999, 18, 487-488.	0.5	3
210	Microstructural Characterization and Grain Growth Kinetics of Atomized Fe-6%Si Alloy. Key Engineering Materials, 2001, 189-191, 461-466.	0.4	3
211	The "Big-Cube―Phase Found in Zr-Cu-Al-Ni Easy Glass Forming Alloys. Materials Science Forum, 2002, 403, 101-106.	0.3	3
212	Influence of the Process Parameters in the Microstructural Evolution of Fe-6.5% Si Alloy Processed Via Spray Forming. Materials Science Forum, 2003, 416-418, 431-436.	0.3	3
213	Microstructure of Spray Formed Fe ₈₃ Nb ₄ ZrTiB ₉ Cu ₂ Alloy. Materials Science Forum, 2003, 416-418, 388-394.	0.3	3
214	Consolidation of Mechanically Alloyed Aluminium Matrix Composite Powders by Severe Plastic Deformation. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 307-312.	0.1	3
215	Microstructures of Rapidly Solidified Al-9Si-3Cu Alloy. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 421-426.	0.1	3
216	Order/Disorder Transformations in Spray Formed FeSiAl Alloys. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 553-556.	0.1	3

#	Article	IF	CITATIONS
217	Hydrogen Sorption Properties of the Complex Hydride Mg ₂ FeH ₆ Consolidated by HPT. Materials Science Forum, 2010, 667-669, 1053-1058.	0.3	3
218	Overspray Powder Characterization of Fe-Based Glassy Alloy. Materials Science Forum, 0, 727-728, 468-475.	0.3	3
219	Laser Cladding of Fe-based Metallic Glass/MoS2 Self-lubricating Composites: Effect of Power and Scanning Speed. Materials Research, 2017, 20, 836-841.	0.6	3
220	Influence of Al Additions on the Microstructure and Mechanical Properties of a C and Si-Free High-Mn Steel. Metals, 2020, 10, 352.	1.0	3
221	Additive manufacturing of a quasicrystal-forming Al95Fe2Cr2Ti1 alloy with remarkable high-temperature strength and ductility. Additive Manufacturing, 2021, 41, 101960.	1.7	3
222	A wear-resistant Al85Cu6Fe3Cr6 spray-formed quasicrystalline composite. Materialia, 2022, 21, 101367.	1.3	3
223	Microstructural Characterization of Spray Deposited Al-Y-Ni-Co-Zr Alloy and Al-Y-Ni-Co-Zr + SiC _p Metal Matrix Composite. Materials Science Forum, 2002, 403, 95-100.	0.3	2
224	Phase Evolution and Microstructural Characterisation of High-Energy Ball Milled Al-Si-Fe-Ni Alloys. Materials Science Forum, 2002, 386-388, 59-64.	0.3	2
225	Glass Formation of Containerless Levitated Zr ₅₅ Al ₁₀ Ni ₅ Cu ₃₀ Alloy Containing Oxygen. Materials Science Forum, 2002, 386-388, 53-58.	0.3	2
226	Microstructural Characterization of Spray Formed Ni-Al-Cr-C Alloys. Materials Science Forum, 2003, 416-418, 437-443.	0.3	2
227	Electromechanical Processing of Bulk Metallic Glasses. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 11-16.	0.1	2
228	Rapidly Solidified Al-Si-Mg Alloy. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 594-598.	0.1	2
229	Microstructural Characterization of Spray Formed Al ₇₂ Si ₁₄ Fe ₁₄ Alloy. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 659-664.	0.1	2
230	Microstructural Characterization of Spray Formed A380 Alloy. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 588-593.	0.1	2
231	Influence of the atomization gas on the microstructure and magnetic properties of spray-formed Fe–3%Si–3.5%Al alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 477, 9-14.	2.6	2
232	Al Effect on the Structure of the Spray Formed Fe ₈₈ Si ₁₂ (at%) Alloy. Materials Science Forum, 2008, 570, 150-154.	0.3	2
233	Rapidly Solidified Al-6Si-3Cu Alloy. Materials Science Forum, 2008, 570, 103-108.	0.3	2
234	Selection of new glass-forming compositions in Al–La system using a combination of topological instability and thermodynamic criteria. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 512, 53-57.	2.6	2

#	Article	IF	CITATIONS
235	2Mg-Fe Alloy Processed by Hot Extrusion: Influence of Particle Size and Extrusion Reduction Ratio on Hydrogenation Properties. Materials Science Forum, 0, 691, 3-9.	0.3	2
236	Stability of an amorphous alloy of the Mm-Al-Ni-Cu system. Materials Research, 2012, 15, 757-762.	0.6	2
237	Consolidation of the Cu46Zr42Al7Y5 amorphous ribbons and powder alloy by hot extrusion. Materials Research, 2012, 15, 728-738.	0.6	2
238	On the ternary eutectic reaction in the Fe 60 Cr 8 Nb 8 B 24 quaternary alloy. Journal of Alloys and Compounds, 2017, 707, 281-286.	2.8	2
239	Rapid Solidification and Laser Cladding of Gas Atomized Ni-Nb-Sn Bulk Metallic Glass. Materials Science Forum, 0, 899, 311-316.	0.3	2
240	Effect of Co additions on the phase formation, thermal stability, and mechanical properties of rapidly solidified Ti–Cu-based alloys. Journal of Materials Research, 2017, 32, 2578-2584.	1.2	2
241	Microstructural Evolution and Mechanical Properties of Ni57Nb33Zr5Co5 Metallic Glass. Materials Research, 2017, 20, 244-247.	0.6	2
242	Thermal Spraying Processes and Amorphous Alloys: Macro-Indicators of Patent Activity. Materials Research, 2017, 20, 89-95.	0.6	2
243	Microstructure Characterization and Kinetics of Crystallization Behavior of Tubular Spray Formed Fe43.2Co28.8B19.2Si4.8Nb4 Bulk Metallic Glass*. HTM - Journal of Heat Treatment and Materials, 2014, 69, 312-321.	0.1	2
244	Magnetic Properties of Spray Formed Fe-3%Si, Fe-5%Si and Fe-6.5%Si Alloys. Materials Science Forum, 2003, 416-418, 113-118.	0.3	1
245	Glass Forming Ability of Fe-Co Based Alloys with High and Low Boron Additions. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 149-154.	0.1	1
246	Retained Austenite in Spray Formed High Chromium White Cast Iron. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 297-302.	0.1	1
247	Microstructural Characterization of As-Quenched and Heat Treated Al-Si-Mg Melt-Spun Ribbons. Journal of Metastable and Nanocrystalline Materials, 2004, 22, 103-108.	0.1	1
248	Consolidation of Easy Glass Former Zr ₅₅ Cu ₃₀ Al ₁₀ Ni ₅ Alloy Ribbons by Severe Plastic Deformation. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 253-256.	0.1	1
249	Crystallization of Fe ₆₃ Nb ₁₀ Al ₄ Si ₃ B ₂₀ Amorphous Alloy. Journal of Metastable and Nanocrystalline Materials, 2004, 22, 109-114.	0.1	1
250	Microstructural Characterization of Gas Atomized Al-10%Si-4%Fe Alloy Powder. Journal of Metastable and Nanocrystalline Materials, 2004, 22, 115-120.	0.1	1
251	High-Strength Aluminium-Based Alloys. Journal of Metastable and Nanocrystalline Materials, 2004, 22, 27-32.	0.1	1
252	Microstructural Characterization of Spray Formed Al-9Si-3Cu-1Fe and Al-9Si-3Cu-1Fe + Al-4Si-4Fe Co-Deposited Alloy. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 627-630.	0.1	1

#	Article	IF	CITATIONS
253	Hot Extrusion of Nanostructured Al Alloy Powder: Extrusion Ratio and Temperature Effect on the Microstructure and Mechanical Properties. Materials Science Forum, 0, 570, 91-96.	0.3	1
254	Processing and Simulation for Consolidation of Nanostructured Al-Cu Powder Alloys. Materials Science Forum, 0, 570, 97-102.	0.3	1
255	New Zr-based glass-forming alloys containing Gd and Sm. Materials Research, 2012, 15, 723-727.	0.6	1
256	Microstructural Features of Sn-3.0Ag-0.7Cu Alloy Prepared by Conventional and Microwave Sintering. Materials Science Forum, 0, 899, 412-417.	0.3	1
257	Effect of minor Si additions and cooling rate on the phase formation and properties of glass former Ni57Nb33Zr5Co5 alloy. Journal of Alloys and Compounds, 2019, 787, 918-927.	2.8	1
258	Effect of the addition of Mn on the tensile properties of a spray-formed and extruded Al-9Si-4Cu-1Fe alloy. Journal of Physics: Conference Series, 2009, 144, 012014.	0.3	1
259	Pitting Resistance of Al90Fe7Nb3 and Al90Fe7Zr3 Nanocrystalline Alloys Obtained by Melt-Spinning and Hot Extrusion. Portugaliae Electrochimica Acta, 2009, 27, 309-316.	0.4	1
260	Recent developments on fabrication of Al-matrix composites reinforced with quasicrystals: From metastable to conventional processing. Journal of Materials Research, 2021, 36, 1-17.	1.2	1
261	An equivalent circuit developed for a 2-winding shell-type amorphous core transformer. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 1089-1092.	2.6	0
262	Solidification of Germanium, Al-Based and Pd-Based Alloys under High Pressure. Journal of Metastable and Nanocrystalline Materials, 1999, 2-6, 259-264.	0.1	0
263	Phase Selection in the Crystallization of Zr ₅₅ Al ₁₀ Ni ₅ Cu ₃₀ Amorphous Alloy. Materials Science Forum, 2001, 360-362, 107-112.	0.3	0
264	Formation of Novel Microstructures by Spray Deposition Process. Materials Science Forum, 2002, 403, 45-50.	0.3	0
265	Glass Formation of Containerless Levitated Zr ₅₅ Al ₁₀ Ni ₅ Cu ₃₀ Alloy Containing Oxygen. Journal of Metastable and Nanocrystalline Materials, 2002, 13, 53-58.	0.1	0
266	Phase Evolution and Microstructural Characterisation of High-Energy Ball Milled Al-Si-Fe-Ni Alloys. Journal of Metastable and Nanocrystalline Materials, 2002, 13, 59-64.	0.1	0
267	Particle Size Distribution in the Radial Direction of the Spray Cone and its Influence on the Formation of Porosity in Fe-6%Si Alloy Processed by Spray Forming. Materials Science Forum, 2003, 416-418, 425-430.	0.3	0
268	Solidification of the Non Dendrite-Forming Pb-16wt%Sn Alloy During Spray Forming. Materials Science Forum, 2003, 416-418, 401-406.	0.3	0
269	Thermodynamic Analysis and Experimental Assessment of Al-Fe-Nd Alloys. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 557-562.	0.1	0
270	Partial Crystallisation and Mechanical Properties of Bulk Metallic Glasses. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 71-76.	0.1	0

#	Article	IF	CITATIONS
271	Microstructural Characterization of Rapidly Solidified Al-6.5%Si-4%Cu Alloy Powders Produced by Gas Atomization. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 519-522.	0.1	о
272	Soft Magnetic Properties of Amorphous Fe _{73-x} Nb _x Al ₄ Si ₃ B ₂₀ Alloys. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 431-434.	0.1	0
273	Crystallization of Amorphous Al ₈₅ Ce ₅ Ni ₁₀ Ribbon. Materials Science Forum, 2008, 570, 126-131.	0.3	0
274	Effects of the addition of SiC on the crystallization of Al84Ni8Co4Y3Zr1 (at.%) amorphous ribbons. Journal of Non-Crystalline Solids, 2008, 354, 4878-4882.	1.5	0
275	Milling and Consolidation by Hot Rolling of Al-Fe-Cr Alloy. Materials Science Forum, 0, 591-593, 258-263.	0.3	О
276	Effect of the addition of Mn on the tensile properties of a spray-formed and extruded Al-9Si-4Cu-1Fe alloy. Journal of Physics: Conference Series, 2009, 144, 012114.	0.3	0
277	Selection of compositions with high glass forming ability in the Ni-Nb-B alloy system. Materials Research, 2012, 15, 718-722.	0.6	0
278	Characterization of Atomized Powders and Extruded Samples of an Al-Si-Cu Alloy. Materials Science Forum, 0, 899, 442-447.	0.3	0
279	Microstructural Characterization of a Laser Surface Remelted Cu-Based Shape Memory Alloy. Materials Research, 2018, 21, .	0.6	Ο
280	Corrosion of Fe-Based Nanocrystalline Alloys with Soft Magnetic Properties. Journal of ASTM International, 2010, 7, 102563.	0.2	0
281	Materials Research: Ibero-american Journal of Materials. Materials Research, 2012, 15, .	0.6	Ο
282	Influence of Heterogeneous Nuclei on the Solidification of Pd77.5Cu6Si16.5 Glassy Alloy. , 1988, , 195-198.		0
283	PROPRIEDADES DE ARMAZENAMENTO DE HIDROGÊNIO DO COMPOSITO MG-FE-CNT PREPARADO POR MOAGEM, EXTRUSÃ∱O À QUENTE E LAMINAÇÃ∱O À FRIO. , 0, , .		0
	Formation, Stability and Ultrahigh Strength of Novel Nanostructured Alloys by Partial Crystallization of High-Entropy (Fe _{0.25} Co _{0.25} Ni) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
284		0.4	0

+ <sub>86â€'89</sub>B <sub>11â€'14</sub> Amorphous Phase. SSRN Electronic Journal, 0, ,