
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1547988/publications.pdf Version: 2024-02-01

ΥΠ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2007, 2, 577-583.	15.6	5,080
2	Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015, 44, 5148-5180.	18.7	4,776
3	Electrochemical Reduction of N ₂ under Ambient Conditions for Artificial N ₂ Fixation and Renewable Energy Storage Using N ₂ /NH ₃ Cycle. Advanced Materials, 2017, 29, 1604799.	11.1	969
4	Ultrafast Formation of Amorphous Bimetallic Hydroxide Films on 3D Conductive Sulfide Nanoarrays for Largeâ€Currentâ€Density Oxygen Evolution Electrocatalysis. Advanced Materials, 2017, 29, 1700404.	11.1	462
5	Protective Coating of Superparamagnetic Iron Oxide Nanoparticles. Chemistry of Materials, 2003, 15, 1617-1627.	3.2	450
6	Controllable Growth and Transfer of Monolayer MoS ₂ on Au Foils and Its Potential Application in Hydrogen Evolution Reaction. ACS Nano, 2014, 8, 10196-10204.	7.3	404
7	Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nature Communications, 2018, 9, 2609.	5.8	389
8	Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nature Energy, 2016, 1, .	19.8	352
9	Coupling Subâ€Nanometric Copper Clusters with Quasiâ€Amorphous Cobalt Sulfide Yields Efficient and Robust Electrocatalysts for Water Splitting Reaction. Advanced Materials, 2017, 29, 1606200.	11.1	350
10	Homogeneous CoO on Graphene for Binderâ€Free and Ultralongâ€Life Lithium Ion Batteries. Advanced Functional Materials, 2013, 23, 4345-4353.	7.8	333
11	Pt@CeO ₂ Multicore@Shell Self-Assembled Nanospheres: Clean Synthesis, Structure Optimization, and Catalytic Applications. Journal of the American Chemical Society, 2013, 135, 15864-15872.	6.6	323
12	In Situ Generation of Bifunctional, Efficient Fe-Based Catalysts from Mackinawite Iron Sulfide for Water Splitting. CheM, 2018, 4, 1139-1152.	5.8	271
13	Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy–O2 batteries. Nature Chemistry, 2019, 11, 64-70.	6.6	265
14	Cathode Surfaceâ€Induced, Solvationâ€Mediated, Micrometerâ€Sized Li ₂ O ₂ Cycling for Li–O ₂ Batteries. Advanced Materials, 2016, 28, 9620-9628.	11.1	232
15	Surfactantâ€Free Aqueous Synthesis of Pure Singleâ€Crystalline SnSe Nanosheet Clusters as Anode for High Energy―and Powerâ€Density Sodiumâ€ŀon Batteries. Advanced Materials, 2017, 29, 1602469.	11.1	231
16	Generating Defectâ€Rich Bismuth for Enhancing the Rate of Nitrogen Electroreduction to Ammonia. Angewandte Chemie - International Edition, 2019, 58, 9464-9469.	7.2	226
17	Rhodium–nickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage. Energy and Environmental Science, 2012, 5, 6885.	15.6	214
18	Alkali Metal Anodes for Rechargeable Batteries. CheM, 2019, 5, 313-338.	5.8	170

#	Article	IF	CITATIONS
19	Dendritic, Transferable, Strictly Monolayer MoS ₂ Flakes Synthesized on SrTiO ₃ Single Crystals for Efficient Electrocatalytic Applications. ACS Nano, 2014, 8, 8617-8624.	7.3	158
20	Flexible Electrodes for Sodiumâ€lon Batteries: Recent Progress and Perspectives. Advanced Materials, 2017, 29, 1703012.	11.1	156
21	Transitionâ€Metal–Boron Intermetallics with Strong Interatomic d–sp Orbital Hybridization for Highâ€Performance Electrocatalysis. Angewandte Chemie - International Edition, 2020, 59, 3961-3965.	7.2	139
22	A Flexible and Wearable Lithium–Oxygen Battery with Record Energy Density achieved by the Interlaced Architecture inspired by Bamboo Slips. Advanced Materials, 2016, 28, 8413-8418.	11.1	138
23	Ru Species Supported on MOFâ€Derived Nâ€Doped TiO ₂ /C Hybrids as Efficient Electrocatalytic/Photocatalytic Hydrogen Evolution Reaction Catalysts. Advanced Functional Materials, 2020, 30, 2003007.	7.8	126
24	Formation of Septuple‧helled (Co _{2/3} Mn _{1/3})(Co _{5/6} Mn _{1/6}) ₂ O ₄ Hollow Spheres as Electrode Material for Alkaline Rechargeable Battery. Advanced Materials, 2017, 29, 1700550.	11.1	122
25	β-NiS modified CdS nanowires for photocatalytic H ₂ evolution with exceptionally high efficiency. Chemical Science, 2018, 9, 1574-1585.	3.7	112
26	Bloodâ€Capillaryâ€Inspired, Freeâ€Standing, Flexible, and Lowâ€Cost Superâ€Hydrophobic Nâ€CNTs@SS Cathoo for Highâ€Capacity, Highâ€Rate, and Stable Liâ€Air Batteries. Advanced Energy Materials, 2018, 8, 1702242.	des 10.2	108
27	In situ generated FeF 3 in homogeneous iron matrix toward high-performance cathode material for sodium-ion batteries. Nano Energy, 2014, 10, 295-304.	8.2	101
28	High-Performance ZnCo ₂ O ₄ @CeO ₂ Core@shell Microspheres for Catalytic CO Oxidation. ACS Applied Materials & Interfaces, 2014, 6, 22216-22223.	4.0	98
29	The PVDF-HFP gel polymer electrolyte for Li-O 2 battery. Solid State Ionics, 2018, 318, 88-94.	1.3	93
30	Rectangular AgIn(WO ₄) ₂ Nanotubes: A Promising Photoelectric Material. Advanced Functional Materials, 2008, 18, 2328-2334.	7.8	88
31	Transitionâ€Metal–Boron Intermetallics with Strong Interatomic d–sp Orbital Hybridization for Highâ€Performance Electrocatalysis. Angewandte Chemie, 2020, 132, 3989-3993.	1.6	88
32	γ-Al ₂ O ₃ supported Pd@CeO ₂ core@shell nanospheres: salting-out assisted growth and self-assembly, and their catalytic performance in CO oxidation. Chemical Science, 2015, 6, 2877-2884.	3.7	86
33	Protecting the Lithium Metal Anode for a Safe Flexible Lithiumâ€Air Battery in Ambient Air. Angewandte Chemie - International Edition, 2019, 58, 18240-18245.	7.2	81
34	Dispersion–Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries. ACS Applied Materials & Interfaces, 2017, 9, 15549-15556.	4.0	79
35	An Illuminationâ€Assisted Flexible Selfâ€Powered Energy System Based on a Li–O ₂ Battery. Angewandte Chemie - International Edition, 2019, 58, 16411-16415.	7.2	78
36	Preparation and gas storage of high surface area microporous carbon derived from biomass source cornstalks. Bioresource Technology, 2008, 99, 4803-4808.	4.8	76

#	Article	IF	CITATIONS
37	Co ₃ O ₄ @CeO ₂ Core@Shell Cubes: Designed Synthesis and Optimization of Catalytic Properties. Chemistry - A European Journal, 2014, 20, 4469-4473.	1.7	75
38	Copper doped ceria porous nanostructures towards a highly efficient bifunctional catalyst for carbon monoxide and nitric oxide elimination. Chemical Science, 2015, 6, 2495-2500.	3.7	74
39	Highâ€Performance Integrated Selfâ€Package Flexible Li–O ₂ Battery Based on Stable Composite Anode and Flexible Gas Diffusion Layer. Advanced Materials, 2017, 29, 1700378.	11.1	72
40	Highly transparent bulk PMMA/ZnO nanocomposites with bright visible luminescence and efficient UV-shielding capability. Journal of Materials Chemistry, 2012, 22, 11971.	6.7	70
41	Rational catalyst design for oxygen evolution under acidic conditions: strategies toward enhanced electrocatalytic performance. Journal of Materials Chemistry A, 2021, 9, 5890-5914.	5.2	65
42	Green and controlled synthesis of Cu2O–graphene hierarchical nanohybrids as high-performance anode materials for lithium-ion batteries via an ultrasound assisted approach. Dalton Transactions, 2012, 41, 4316.	1.6	64
43	Rhâ€Niâ€B Nanoparticles as Highly Efficient Catalysts for Hydrogen Generation from Hydrous Hydrazine. Advanced Energy Materials, 2015, 5, 1401879.	10.2	61
44	A Controllable Surface Etching Strategy for Wellâ€Đefined Spiny Yolk@Shell CuO@CeO ₂ Cubes and Their Catalytic Performance Boost. Advanced Functional Materials, 2018, 28, 1802559.	7.8	60
45	Comparative Study of Structural Changes in NH ₃ BH ₃ , LiNH ₂ BH ₃ , and KNH ₂ BH ₃ During Dehydrogenation Process. Journal of Physical Chemistry C, 2012, 116, 5957-5964.	1.5	57
46	Highâ€Performance Ultrathin Co ₃ O ₄ Nanosheet Supported PdO/CeO ₂ Catalysts for Methane Combustion. Advanced Energy Materials, 2019, 9, 1803583.	10.2	57
47	Superior electrode performance of mesoporous hollow TiO2 microspheres through efficient hierarchical nanostructures. Journal of Power Sources, 2011, 196, 8618-8624.	4.0	52
48	Decoration of Pt on Cu/Co double-doped CeO ₂ nanospheres and their greatly enhanced catalytic activity. Chemical Science, 2016, 7, 1867-1873.	3.7	51
49	Microporous carbon derived from pinecone hull as anode material for lithium secondary batteries. Materials Letters, 2007, 61, 5209-5212.	1.3	50
50	Solid state NMR study on the thermal decomposition pathway of sodium amidoborane NaNH2BH3. Journal of Materials Chemistry, 2011, 21, 2609.	6.7	48
51	Generating Defectâ€Rich Bismuth for Enhancing the Rate of Nitrogen Electroreduction to Ammonia. Angewandte Chemie, 2019, 131, 9564-9569.	1.6	47
52	Highly Active PdO/Mn ₃ O ₄ /CeO ₂ Nanocomposites Supported on One Dimensional Halloysite Nanotubes for Photoassisted Thermal Catalytic Methane Combustion. Angewandte Chemie - International Edition, 2021, 60, 18552-18556.	7.2	46
53	Thermal decomposition of alkaline-earth metal hydride and ammonia borane composites. International Journal of Hydrogen Energy, 2010, 35, 12405-12409.	3.8	45
54	CO Oxidation Catalyzed by Two-Dimensional Co ₃ O ₄ /CeO ₂ Nanosheets. ACS Applied Nano Materials, 2019, 2, 5769-5778.	2.4	45

#	Article	IF	CITATIONS
55	Selfâ€Assembled Pd@CeO ₂ /γâ€Al ₂ O ₃ Catalysts with Enhanced Activity for Catalytic Methane Combustion. Small, 2017, 13, 1700941.	5.2	40
56	Conductivity Modulation of 3Dâ€Printed Shellular Electrodes through Embedding Nanocrystalline Intermetallics into Amorphous Matrix for Ultrahighâ€Current Oxygen Evolution. Advanced Energy Materials, 2021, 11, 2100968.	10.2	40
57	Promoting electrocatalytic nitrogen reduction to ammonia <i>via</i> Fe-boosted nitrogen activation on MnO ₂ surfaces. Journal of Materials Chemistry A, 2020, 8, 13679-13684.	5.2	38
58	Nanocarbon encapsulating Ni-doped MoP/graphene composites for highly improved electrocatalytic hydrogen evolution reaction. Composites Communications, 2021, 26, 100792.	3.3	38
59	Colloidal Nobleâ€Metal and Bimetallic Alloy Nanocrystals: A General Synthetic Method and Their Catalytic Hydrogenation Properties. Chemistry - A European Journal, 2010, 16, 6251-6256.	1.7	36
60	An Illuminationâ€Assisted Flexible Selfâ€Powered Energy System Based on a Li–O ₂ Battery. Angewandte Chemie, 2019, 131, 16563-16567.	1.6	35
61	Activation of Ammonia Borane Hybridized with Alkalineâ^'Metal Hydrides: A Low-Temperature and High-Purity Hydrogen Generation Material. Journal of Physical Chemistry C, 2010, 114, 14662-14664.	1.5	33
62	Fe3O4-nanoparticle-decorated TiO2 nanofiber hierarchical heterostructures with improved lithium-ion battery performance over wide temperature range. Nano Research, 2015, 8, 1659-1668.	5.8	33
63	Protecting the Lithium Metal Anode for a Safe Flexible Lithiumâ€Air Battery in Ambient Air. Angewandte Chemie, 2019, 131, 18408-18413.	1.6	32
64	In Situ Fabrication of Porous Co <i>_x</i> P Hierarchical Nanostructures on Carbon Fiber Cloth with Exceptional Performance for Sodium Storage. Advanced Materials, 2022, 34, e2108985.	11.1	32
65	Highly Active Catalyst of Two-Dimensional CoS2/Graphene Nanocomposites for Hydrogen Evolution Reaction. Nanoscale Research Letters, 2015, 10, 488.	3.1	29
66	Galvanic replacement synthesis of Ag _x Au _{1â^'x} @CeO ₂ (0 ≤ ≤) core@shell nanospheres with greatly enhanced catalytic performance. Chemical Science, 2015, 6, 7015-7019.	3.7	29
67	Design and synthesis of near-IR luminescent mesoporous materials covalently linked with tris(8-hydroxyquinolinate)lanthanide(III) complexes. Microporous and Mesoporous Materials, 2008, 115, 535-540.	2.2	28
68	Hydrogen storage properties and mechanisms of Mg(BH4)2â‹2NH3–xMgH2 combination systems. Journal of Alloys and Compounds, 2014, 585, 674-680.	2.8	27
69	Solvation Effect on the Improved Sodium Storage Performance of Nâ€Heteropentacenequinone for Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 26806-26812.	7.2	26
70	Ternary lanthanide (Er3+, Nd3+, Yb3+, Sm3+, Pr3+) complex-functionalized mesoporous SBA-15 materials that emit in the near-infrared range. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199, 57-63.	2.0	24
71	The design of hollow PdO–Co ₃ O ₄ nano-dodecahedrons with moderate catalytic activity for Li–O ₂ batteries. Chemical Communications, 2019, 55, 12683-12686.	2.2	23
72	Self-Assembled Growth of AgIn(MoO4)2 Submicroplates into Hierarchical Structures and Their Near-Infrared Luminescent Properties. Crystal Growth and Design, 2009, 9, 848-852.	1.4	22

#	Article	IF	CITATIONS
73	Water-soluble Au–CeO2 hybrid nanosheets with high catalytic activity and recyclability. Dalton Transactions, 2012, 41, 7193.	1.6	22
74	Trimetallic (Co/Ni/Cu) Hydroxyphosphate Nanosheet Array as Efficient and Durable Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 16859-16866.	3.2	22
75	Mini Review: Recent Advances on Flexible Rechargeable Li–Air Batteries. Energy & Fuels, 2021, 35, 4751-4761.	2.5	18
76	Filling Mesopores of Conductive Metal–Organic Frameworks with Cu Clusters for Selective Nitrate Reduction to Ammonia. ACS Applied Materials & Interfaces, 2022, 14, 32176-32182.	4.0	16
77	Culn(WO4)2 nanospindles and nanorods: controlled synthesis and host for lanthanide near-infrared luminescence properties. CrystEngComm, 2009, 11, 1987.	1.3	14
78	Preciousâ€Metalâ€Free Nanocatalysts for Highly Efficient Hydrogen Production from Hydrous Hydrazine. Advanced Functional Materials, 2014, 24, 7073-7077.	7.8	14
79	Synthesis, structures and photoluminescence of two Er(III) coordination polymers. Journal of Coordination Chemistry, 2008, 61, 945-955.	0.8	13
80	Pr-doped NiCoP nanowire arrays for efficient hydrogen evolution in both acidic and alkaline media. Journal of Alloys and Compounds, 2021, 862, 158047.	2.8	13
81	Layerâ€byâ€Layer Electrodeposition of FTO/TiO 2 /Cu x O/CeO 2 (1 < x < 2) Photocatalysts with High Peroxidaseâ€Like Activity by Greatly Enhanced Singlet Oxygen Generation. Small Methods, 2021, 5, 2100423.	4.6	11
82	3D Carbon Networks: Design and Applications in Sodium Ion Batteries. ChemPlusChem, 2021, 86, 1135-1161.	1.3	11
83	Optimized Selfâ€Templating Synthesis Method for Highly Crystalline Hollow Cu ₂ 0 Nanoboxes. Small Methods, 2020, 4, 2000521.	4.6	10
84	In situ redox strategy for large-scale fabrication of surfactant-free M-Fe2O3 (M = Pt, Pd, Au) hybrid nanospheres. Science China Materials, 2016, 59, 191-199.	3.5	9
85	Recent progresses, challenges and perspectives on rechargeable Liâ€O ₂ batteries. Nano Select, 2020, 1, 79-93.	1.9	9
86	Hollow Zn ₂ GeO ₄ Nanorods Supported on Reduced Graphene Oxides as an Environment-Friendly High-Capacity Anode Material for Lithium Ion Batteries. Science of Advanced Materials, 2013, 5, 523-529.	0.1	9
87	Preparation of Quaternary FeCoMoCu Metal Oxides for Oxygen Evolution Reaction. Chemical Research in Chinese Universities, 2022, 38, 823-828.	1.3	9
88	Synthesis of Ferrite Nanocrystals Stabilized by Ionic‣iquid Molecules through a Thermal Decomposition Route. Chemistry - A European Journal, 2011, 17, 920-924.	1.7	8
89	Lithium hydrazide as a potential compound for hydrogen storage. International Journal of Hydrogen Energy, 2012, 37, 5750-5753.	3.8	6
90	Catalytically active Co 3 O 4 hybrid microstructures and their morphology evolution induced by ceria. Materials Research Bulletin, 2017, 96, 2-9.	2.7	5

#	Article	IF	CITATIONS
91	Synthesis, structure and characterization of new 1D and 2D Ni(II) coordination polymers. Solid State Sciences, 2009, 11, 364-367.	1.5	4
92	Catalytic activity boost of CeO ₂ /Co ₃ O ₄ nanospheres derived from CeCo-glycolate <i>via</i> yolk–shell structural evolution. Inorganic Chemistry Frontiers, 2020, 7, 421-426.	3.0	3
93	Carbon anode material formed from template molecules occluded in a magnesium-substituted aluminophosphate. Materials Chemistry and Physics, 2009, 113, 309-313.	2.0	2
94	Synthesis of monodispersed Au–PbS hybrid nanocrystals via a solid–liquid interfacial reaction. CrystEngComm, 2012, 14, 7552.	1.3	2
95	Highly Active PdO/Mn 3 O 4 /CeO 2 Nanocomposites Supported on One Dimensional Halloysite Nanotubes for Photoassisted Thermal Catalytic Methane Combustion. Angewandte Chemie, 2021, 133, 18700-18704.	1.6	2
96	Solvation Effect on the Improved Sodium Storage Performance of Nâ€heteropentacenequinone. Angewandte Chemie, 0, , .	1.6	2
97	Hierarchical Gold Nanoflower Syntheses and Surface-Enhanced Raman Scattering Properties Research. Science of Advanced Materials, 2013, 5, 1797-1800.	0.1	1