Yingxin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1547664/publications.pdf

Version: 2024-02-01

471509 454955 1,116 48 17 30 citations h-index g-index papers 49 49 49 1580 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ultra-broadband and high response of the Bi ₂ Te ₃ –Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale, 2015, 7, 12535-12541.	5 . 6	214
2	Three-Dimensional Graphene Field-Effect Transistors as High-Performance Photodetectors. Nano Letters, 2019, 19, 1494-1503.	9.1	113
3	Ultraâ∈Broadband Photodetector for the Visible to Terahertz Range by Selfâ∈Assembling Reduced Graphene Oxideâ∈Silicon Nanowire Array Heterojunctions. Small, 2014, 10, 2345-2351.	10.0	109
4	High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36304-36311.	8.0	64
5	Terahertz Streaking of Few-Femtosecond Relativistic Electron Beams. Physical Review X, 2018, 8, .	8.9	61
6	Highly conductive free-standing reduced graphene oxide thin films for fast photoelectric devices. Carbon, 2017, 115, 561-570.	10.3	56
7	Ultrabroadband photosensitivity from visible to terahertz at room temperature. Science Advances, 2018, 4, eaao3057.	10.3	55
8	Annealing Temperature-Dependent Terahertz Thermal–Electrical Conversion Characteristics of Three-Dimensional Microporous Graphene. ACS Applied Materials & Samp; Interfaces, 2019, 11, 6411-6420.	8.0	40
9	Ultrabroadband, Sensitive, and Fast Photodetection with Needle-Like EuBiSe ₃ Single Crystal. ACS Photonics, 2019, 6, 895-903.	6.6	40
10	Thermal Localization Enhanced Fast Photothermoelectric Response in a Quasi-One-Dimensional Flexible NbS ₃ Photodetector. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14165-14173.	8.0	35
11	Exact Reconstruction for Near-Field Three-Dimensional Planar Millimeter-Wave Holographic Imaging. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36, 1221-1236.	2.2	33
12	Terahertz-induced photothermoelectric response in graphene-metal contact structures. Journal Physics D: Applied Physics, 2016, 49, 425101.	2.8	31
13	Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity. Carbon, 2019, 153, 274-284.	10.3	30
14	Ultrabroadband, Fast, and Flexible Photodetector Based on HfTe ₅ Crystal. Advanced Optical Materials, 2020, 8, 2000833.	7.3	25
15	Terahertz photodetector based on double-walled carbon nanotube macrobundle–metal contacts. Optics Express, 2015, 23, 13348.	3.4	24
16	Reduction degree regulated room-temperature terahertz direct detection based on fully suspended and low-temperature thermally reduced graphene oxides. Carbon, 2019, 144, 193-201.	10.3	19
17	Polarization-sensitive photodetectors based on three-dimensional molybdenum disulfide (MoS ₂) field-effect transistors. Nanophotonics, 2020, 9, 4719-4728.	6.0	19
18	Terahertz Detectors Based on Carbon Nanomaterials. Advanced Functional Materials, 2022, 32, 2107499.	14.9	19

#	Article	IF	CITATIONS
19	Range Resolution Enhancement for Three-Dimensional Millimeter-Wave Holographic Imaging. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1422-1425.	4.0	18
20	Photocurrent response of carbon nanotube–metal heterojunctions in the terahertz range. Optics Express, 2014, 22, 5895.	3.4	15
21	lonic Liquid Gating Enhanced Photothermoelectric Conversion in Three-Dimensional Microporous Graphene. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28510-28519.	8.0	13
22	Metamaterials $\hat{\mathbf{e}}$ ased Photoelectric Conversion: From Microwave to Optical Range. Laser and Photonics Reviews, 2022, 16, .	8.7	11
23	Restoration of terahertz signals distorted by atmospheric water vapor absorption. Journal of Applied Physics, 2009, 105, 103105.	2.5	10
24	Ultra-wideband self-powered photodetector based on suspended reduced graphene oxide with asymmetric metal contacts. RSC Advances, 2021, 11, 19482-19491.	3.6	10
25	Suppression of spectral interferences due to water-vapor rotational transitions in terahertz time-domain spectroscopy. Optics Letters, 2008, 33, 1354.	3.3	9
26	Efficient room-temperature terahertz detection via bolometric and photothermoelectric effects in EuBiTe ₃ crystal. Optical Materials Express, 2020, 10, 952.	3.0	9
27	Identification and quantitative analysis of chemical compounds based on multiscale linear fitting of terahertz spectra. Optical Engineering, 2014, 53, 074102.	1.0	8
28	Calibration of a thermal detector for pulse energy measurement of terahertz radiation. Optics Letters, 2012, 37, 4395.	3.3	7
29	Localized Electromagnetic Resonance Enabled THz Photothermoelectric Detection in Graphene. Frontiers in Physics, 2020, 8, .	2.1	6
30	Strongly enhanced local electromagnetic field in mid-infrared and terahertz photodetectors employing a hybrid antenna. AIP Advances, 2020, 10, 015048.	1.3	6
31	Total variance regularization for millimeter-wave holographic imaging. , 2014, , .		3
32	Multi-Polarization Information Fusion for Object Contour Display in Passive Millimeter-Wave and Terahertz Security Imaging., 2020,,.		2
33	A method for removing echoes in the terahertz time-domain spectroscopy system. , 2012, , .		1
34	A wide-band three-dimensional submillimeter-wave imaging system based on vector network analyzer. , 2016, , .		1
35	A quantitative method for detecting explosive materials using terahertz spectroscopy. , 2007, , .		0
36	Investigation of material identification with terahertz pulsed imaging. , 2008, , .		0

3

#	Article	IF	CITATIONS
37	Diffraction enhanced imaging with pulsed terahertz radiation. , 2009, , .		O
38	Electric field analysis for the design of LT-GaAs photoconductive terahertz antennas. , 2012, , .		0
39	Characterization of Golay detector for the absolute power measurement of terahertz radiation. , 2012, , .		0
40	Terahertz response of carbon nanotube/metal heterojunctions., 2013,,.		0
41	An automatic unfolding method for terahertz spectra. , 2013, , .		0
42	Room-temperature terahertz detection by carbon nanotube/metal heterostructures. , 2014, , .		0
43	Algebraic reconstruction technique for millimeter-wave holographic imaging. , 2015, , .		0
44	A proposal for phase-locked arrays of terahertz quantum cascade lasers. , 2017, , .		0
45	Mid-Infrared-Pumped quantum cascade structure for terahertz detection. , 2017, , .		O
46	Enhancement of Terahertz-Induced Photothermoelectric Effect in a Carbon Nanotube Fiber by 3D Porous Graphene. , 2018, , .		0
47	Photothermal Conversion and Fast Response Properties of 3D Graphene Foam in the Terahertz Range. , 2018, , .		0
48	Dynamics of Optically Mutual-injected Terahertz Quantum Cascade Lasers. , 2019, , .		0