Yulia A Sidorova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1547422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glial Cell Line-Derived Neurotrophic Factor Family Ligands, Players at the Interface of Neuroinflammation and Neuroprotection: Focus Onto the Glia. Frontiers in Cellular Neuroscience, 2021, 15, 679034.	3.7	12
2	Neuroprotective Potential of a Small Molecule RET Agonist in Cultured Dopamine Neurons and Hemiparkinsonian Rats. Journal of Parkinson's Disease, 2021, 11, 1023-1046.	2.8	8
3	Glial Cell Line–Derived Neurotrophic Factor Receptor Rearranged During Transfection Agonist Supports Dopamine Neurons <i>In Vitro</i> and Enhances Dopamine Release <i>In Vivo</i> . Movement Disorders, 2020, 35, 245-255.	3.9	24
4	Detecting Oxidative Stress Biomarkers in Neurodegenerative Disease Models and Patients. Methods and Protocols, 2020, 3, 66.	2.0	19
5	Can Growth Factors Cure Parkinson's Disease?. Trends in Pharmacological Sciences, 2020, 41, 909-922.	8.7	29
6	Novel RET agonist for the treatment of experimental neuropathies. Molecular Pain, 2020, 16, 174480692095086.	2.1	12
7	Small Molecules and Peptides Targeting Glial Cell Line-Derived Neurotrophic Factor Receptors for the Treatment of Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 6575.	4.1	7
8	Small-Molecule Ligands that Bind the RET Receptor Activate Neuroprotective Signals Independent of but Modulated by Coreceptor GFRα1. Molecular Pharmacology, 2020, 98, 1-12.	2.3	6
9	Glial cell line-derived neurotrophic factors (GFLs) and small molecules targeting RET receptor for the treatment of pain and Parkinson's disease. Cell and Tissue Research, 2020, 382, 147-160.	2.9	22
10	PTPRA Phosphatase Regulates GDNF-Dependent RET Signaling and Inhibits the RET Mutant MEN2A Oncogenic Potential. IScience, 2020, 23, 100871.	4.1	10
11	Morphine-3-glucuronide causes antinociceptive cross-tolerance to morphine and increases spinal substance P expression. European Journal of Pharmacology, 2020, 875, 173021.	3.5	9
12	Small-molecule agonists of the RET receptor tyrosine kinase activate biased trophic signals that are influenced by the presence of GFRa1 co-receptors. Journal of Biological Chemistry, 2020, 295, 6532-6542.	3.4	9
13	RET Receptor Tyrosine Kinase: Role in Neurodegeneration, Obesity, and Cancer. International Journal of Molecular Sciences, 2020, 21, 7108.	4.1	24
14	GDNF Receptor Agonist Alleviates Motor Imbalance in Unilateral 6-Hydroxydopamine Model of Parkinson's Disease. , 2020, 1, 100004.		1
15	A Novel Small Molecule Supports the Survival of Cultured Dopamine Neurons and May Restore the Dopaminergic Innervation of the Brain in the MPTP Mouse Model of Parkinson's Disease. ACS Chemical Neuroscience, 2019, 10, 4337-4349.	3.5	10
16	Gfra1 Underexpression Causes Hirschsprung's Disease and Associated Enterocolitis in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 655-678.	4.5	20
17	Neuroregeneration in Parkinson's Disease: From Proteins to Small Molecules. Current Neuropharmacology, 2019, 17, 268-287.	2.9	24
18	Differential Spinal and Supraspinal Activation of Glia in a Rat Model of Morphine Tolerance. Neuroscience, 2018, 375, 10-24.	2.3	46

Yulia A Sidorova

#	Article	IF	CITATIONS
19	Small-Molecule Ligands as Potential GDNF Family Receptor Agonists. ACS Omega, 2018, 3, 1022-1030.	3.5	14
20	Molecular Dynamics Simulations of the Interactions between Glial Cell Line-Derived Neurotrophic Factor Family Receptor GFRα1 and Small-Molecule Ligands. ACS Omega, 2018, 3, 11407-11414.	3.5	69
21	A deep convolutional neural network approach for astrocyte detection. Scientific Reports, 2018, 8, 12878.	3.3	42
22	A Novel Small Molecule GDNF Receptor RET Agonist, BT13, Promotes Neurite Growth from Sensory Neurons in Vitro and Attenuates Experimental Neuropathy in the Rat. Frontiers in Pharmacology, 2017, 8, 365.	3.5	45
23	Zebrafish GDNF and its co-receptor GFRα1 activate the human RET receptor and promote the survival of dopaminergic neurons in vitro. PLoS ONE, 2017, 12, e0176166.	2.5	14
24	Quercetin Attenuates Benzo(α)pyrene-induced CYP1A Expression. Biomedical and Environmental Sciences, 2017, 30, 308-313.	0.2	8
25	Menadione Suppresses Benzo(α)pyrene-Induced Activation of Cytochromes P450 1A: Insights into a Possible Molecular Mechanism. PLoS ONE, 2016, 11, e0155135.	2.5	14
26	Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin. Journal of Cell Biology, 2011, 192, 153-169.	5.2	164
27	Persephin signaling through GFRα1: The potential for the treatment of Parkinson's disease. Molecular and Cellular Neurosciences, 2010, 44, 223-232.	2.2	30
28	Heparin-binding determinants of GDNF reduce its tissue distribution but are beneficial for the protection of nigral dopaminergic neurons. Experimental Neurology, 2009, 219, 499-506.	4.1	35
29	The Structure of the Glial Cell Line-derived Neurotrophic Factor-Coreceptor Complex. Journal of Biological Chemistry, 2008, 283, 35164-35172.	3.4	69
30	Effect of cold stress on expression of genes for the AhR-dependent pathway of CYP1 regulation in rat liver. Bulletin of Experimental Biology and Medicine, 2006, 141, 315-318.	0.8	4
31	Inhibitory Effect of α-Tocopherol on Benzo(a)pyrene-Induced CYPA1 Activity in Rat Liver. Bulletin of Experimental Biology and Medicine, 2005, 140, 517-520.	0.8	7
32	Rat hepatic CYP1A1 and CYP1A2 induction by menadione. Toxicology Letters, 2005, 155, 253-258.	0.8	10
33	Dose- and Time-Dependent Effects of Menadione on Enzymes of Xenobiotic Metabolism in Rat Liver. Bulletin of Experimental Biology and Medicine, 2004, 137, 231-234.	0.8	8
34	Transcriptional activation of cytochrome P450 1A1 with ?-tocopherol. Bulletin of Experimental Biology and Medicine, 2004, 138, 233-236.	0.8	3
35	Dose-dependent effect of alpha-tocopherol on activity of xenobiotic metabolizing enzymes in rat liver. Bulletin of Experimental Biology and Medicine, 2003, 136, 38-41.	0.8	5