Solomon Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1547303/publications.pdf

Version: 2024-02-01

89 papers

3,825 citations

331259 21 h-index 60 g-index

89 all docs 89 docs citations 89 times ranked 4181 citing authors

#	Article	IF	CITATIONS
1	Green hydrogen investments: Investigating the option to wait. Energy, 2022, 241, 122842.	4.5	20
2	Active subsets as a tool for structural characterisation and selection of metal-organic frameworks. Chemical Engineering Research and Design, 2022, 179, 424-434.	2.7	0
3	To trade or not to trade: Simultaneously optimising battery storage for arbitrage and ancillary services. Journal of Energy Storage, 2022, 50, 104234.	3.9	6
4	Flexible CO2 capture for open-cycle gas turbines via vacuum-pressure swing adsorption: A model-based assessment. Energy, 2022, 250, 123805.	4.5	7
5	Optimising onshore wind with energy storage considering curtailment. Energy Reports, 2022, 8, 34-40.	2.5	3
6	Exploring the possibility to provide black start services by using vehicle-to-grid. Energy Reports, 2022, 8, 74-82.	2.5	6
7	Accounting for interface behaviour in multi-stage aqueous two-phase extraction. Chemical Engineering Science, 2021, 230, 116172.	1.9	1
8	Transient CO2 capture for open-cycle gas turbines in future energy systems. Energy, 2021, 216, 119258.	4.5	3
9	The Role of Cycle Life on the Environmental Impact of Li _{6.4} La ₃ Zr _{1.4} Ta _{0.6} O ₁₂ based Solidâ€State Batteries. Advanced Sustainable Systems, 2021, 5, 2000241.	2.7	17
10	Value of aggregator-led community energy storage systems with degradation constraints. Computer Aided Chemical Engineering, 2021, , 1453-1458.	0.3	1
11	Analysing the robustness of multi-stage bioseparations to measurement errors. Computer Aided Chemical Engineering, 2021, 50, 393-398.	0.3	1
12	Towards Automated HAZOPs. Computer Aided Chemical Engineering, 2021, 50, 505-510.	0.3	0
13	Designing bioinspired green nanosilicas using statistical and machine learning approaches. Molecular Systems Design and Engineering, 2021, 6, 293-307.	1.7	5
14	Clean Electricity Generation from Sewage: a novel Ultra-Supercritical Water Oxidation Technology with integrated CCS. Computer Aided Chemical Engineering, 2021, 50, 1459-1464.	0.3	0
15	Long term energy storage with reversible solid oxide cells for microgrid applications. Energy Reports, 2021, 7, 24-33.	2.5	9
16	DC to turnkey: An analysis of the balance of costs for behind the meter BESS at commercial/industrial sites. Energy Reports, 2021, 7, 20-23.	2.5	3
17	Grid frequency volatility in future low inertia scenarios: Challenges and mitigation options. Applied Energy, 2021, 290, 116723.	5.1	32
18	Exploring the economics of large scale lithium ion and lead acid batteries performing frequency response. Energy Reports, 2021, 7, 34-41.	2.5	6

#	Article	IF	CITATIONS
19	Social & Soc	2.5	12
20	Machine learning approach for electric vehicle availability forecast to provide vehicle-to-home services. Energy Reports, 2021, 7, 71-80.	2.5	20
21	The future of frequency response in Great Britain. Energy Reports, 2021, 7, 56-62.	2.5	12
22	Efficient global sensitivity-based model calibration of a high-shear wet granulation process. Chemical Engineering Science, 2021, 238, 116569.	1.9	5
23	Establishing the value of community energy storage: A comparative analysis of the UK and Germany. Journal of Energy Storage, 2021, 40, 102709.	3.9	9
24	Evaluating the role of behavior and social class in electric vehicle adoption and charging demands. IScience, 2021, 24, 102914.	1.9	12
25	Linking CO2 capture and pipeline transportation: sensitivity analysis and dynamic study of the compression train. International Journal of Greenhouse Gas Control, 2021, 111, 103449.	2.3	17
26	Peer-to-peer electricity trading as an enabler of increased PV and EV ownership. Energy Conversion and Management, 2021, 245, 114634.	4.4	37
27	Direct measurements of CO2 capture are essential to assess the technical and economic potential of algal-CCUS. Journal of CO2 Utilization, 2021, 52, 101657.	3.3	23
28	Higher 2nd life Lithium Titanate battery content in hybrid energy storage systems lowers environmental-economic impact and balances eco-efficiency. Renewable and Sustainable Energy Reviews, 2021, 152, 111704.	8.2	22
29	Compression system power requirements for various CO2 sources and transportation options. Computer Aided Chemical Engineering, 2021, 50, 1439-1444.	0.3	1
30	Techno-enviro-economic assessment of household and community energy storage in the UK. Energy Conversion and Management, 2020, 205, 112330.	4.4	50
31	Evaluating the Transient Operation of PCC for fast Response gas Turbines in a Future Low-carbon Energy System. Computer Aided Chemical Engineering, 2020, , 157-162.	0.3	1
32	Suitability of energy storage with reversible solid oxide cells for microgrid applications. Energy Conversion and Management, 2020, 226, 113499.	4.4	35
33	Advanced abuse modelling of Li-ion cells – A novel description of cell pressurisation and simmering reactions. Journal of Power Sources, 2020, 474, 228396.	4.0	10
34	Pathways to economic viability: a pilot scale and techno-economic assessment for algal bioremediation of challenging waste streams. Environmental Science: Water Research and Technology, 2020, 6, 3400-3414.	1.2	7
35	Computational modelling of thermal runaway propagation potential in lithium iron phosphate battery packs. Energy Reports, 2020, 6, 189-197.	2.5	24
36	Identifying calendar-correlated day-ahead price profile clusters for enhanced energy storage scheduling. Energy Reports, 2020, 6, 35-42.	2.5	3

#	Article	IF	CITATIONS
37	Validation and application of agent-based electric vehicle charging model. Energy Reports, 2020, 6, 53-62.	2.5	14
38	The electricity demand of an EV providing power via vehicle-to-home and its potential impact on the grid with different electricity price tariffs. Energy Reports, 2020, 6, 132-141.	2.5	25
39	Improving the feasibility of household and community energy storage: A techno-enviro-economic study for the UK. Renewable and Sustainable Energy Reviews, 2020, 131, 110009.	8.2	30
40	Impact of Household Heterogeneity on Community Energy Storage in the UK. Energy Reports, 2020, 6, 117-123.	2.5	5
41	Can thermal storage assist with the electrification of heat through peak shaving?. Energy Reports, 2020, 6, 124-131.	2.5	17
42	An analysis of frequency events in Great Britain. Energy Reports, 2020, 6, 63-69.	2.5	15
43	Spectrophotometric Analysis of Ternary Uranyl Systems to Replace Tri-N-butyl Phosphate (TBP) in Used Fuel Reprocessing. Journal of Solution Chemistry, 2020, 49, 52-67.	0.6	2
44	A study of the thermal runaway of lithium-ion batteries: A Gaussian Process based global sensitivity analysis. Journal of Power Sources, 2020, 456, 228001.	4.0	11
45	Flow batteries for energy management: Novel algebraic modelling approaches to properly assess their value. Journal of Energy Storage, 2019, 26, 100977.	3.9	3
46	Pursuing safer batteries: Thermal abuse of LiFePO4 cells. Journal of Power Sources, 2019, 414, 557-568.	4.0	80
47	A fully coupled fluid-structure interaction simulation of three-dimensional dynamic ductile fracture in a steel pipeline. Theoretical and Applied Fracture Mechanics, 2019, 101, 224-235.	2.1	14
48	A closed-loop analysis of grid scale battery systems providing frequency response and reserve services in a variable inertia grid. Applied Energy, 2019, 236, 961-972.	5.1	19
49	Efficient simulation of chromatographic separation processes. Computers and Chemical Engineering, 2018, 110, 69-77.	2.0	4
50	Computational and Experimental Study of Solid-Phase Formation during the Decompression of High-Pressure CO ₂ Pipelines. Industrial & Engineering Chemistry Research, 2018, 57, 7054-7063.	1.8	13
51	Flow characteristics and dispersion during the leakage of high pressure CO 2 from an industrial scale pipeline. International Journal of Greenhouse Gas Control, 2018, 73, 70-78.	2.3	22
52	Carbon capture and storage (CCS): the way forward. Energy and Environmental Science, 2018, 11, 1062-1176.	15.6	2,378
53	Metal recovery from jarosite waste – A resin screening study. Separation Science and Technology, 2018, 53, 22-35.	1.3	23
54	Investigating organic phase change behavior with thermal photography. Energy Procedia, 2018, 151, 52-56.	1.8	0

#	Article	IF	Citations
55	Assessment of thermal runaway in commercial lithium iron phosphate cells due to overheating in an oven test. Energy Procedia, 2018, 151, 74-78.	1.8	16
56	Residential PV-BES Systems: Economic and Grid Impact Analysis. Energy Procedia, 2018, 151, 199-208.	1.8	6
57	Flow characteristics and dispersion during the vertical anthropogenic venting of supercritical CO2 from an industrial scale pipeline. Energy Procedia, 2018, 154, 66-72.	1.8	5
58	Methodology to determine the heat capacity of lithium-ion cells. Journal of Power Sources, 2018, 395, 369-378.	4.0	57
59	CO 2 capture and storage (CCS) cost reduction via infrastructure right-sizing. Chemical Engineering Research and Design, 2017, 119, 130-139.	2.7	34
60	Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline. Energy, 2017, 119, 53-66.	4.5	23
61	Modelling the Adsorption-desorption Behavior of CO2 in Shales for Permanent Storage of CO2 and Enhanced Hydrocarbon Extraction. Energy Procedia, 2017, 114, 6942-6949.	1.8	3
62	Modeling of CO ₂ Decompression across the Triple Point. Industrial & Engineering Chemistry Research, 2017, 56, 10491-10499.	1.8	12
63	Assessment of Fracture Propagation in Pipelines Transporting Impure CO2 Streams. Energy Procedia, 2017, 114, 6685-6697.	1.8	7
64	12 Carbon Capture. Green Chemistry and Chemical Engineering, 2017, , 457-632.	0.0	1
65	Impact of stream impurities on compressor power requirements for CO2 pipeline transportation. International Journal of Greenhouse Gas Control, 2016, 54, 652-661.	2.3	29
66	Techno-economic assessment of CO 2 quality effect on its storage and transport: CO 2 QUEST. International Journal of Greenhouse Gas Control, 2016, 54, 662-681.	2.3	25
67	Hybrid fluid–structure interaction modelling of dynamic brittle fracture in steel pipelines transporting CO 2 streams. International Journal of Greenhouse Gas Control, 2016, 54, 702-715.	2.3	15
68	Thermodynamic interpolation for the simulation of two-phase flow of non-ideal mixtures. Computers and Chemical Engineering, 2016, 95, 49-57.	2.0	13
69	Integral Multiphase Turbulence Compressible Jet Expansion Model for Accidental Releases from Pressurized Containments. Industrial & Engineering Chemistry Research, 2016, 55, 7558-7568.	1.8	6
70	Modelling brittle fracture propagation in gas and dense-phase CO2 transportation pipelines. International Journal of Greenhouse Gas Control, 2016, 46, 39-47.	2.3	17
71	Modelling emergency isolation of carbon dioxide pipelines. International Journal of Greenhouse Gas Control, 2016, 44, 88-93.	2.3	6
72	A multi-source flow model for CCS pipeline transportation networks. International Journal of Greenhouse Gas Control, 2015, 43, 108-114.	2.3	13

#	Article	IF	CITATIONS
73	Simulation of two-phase flow through ducts with discontinuous cross-section. Computers and Fluids, 2015, 120, 46-56.	1.3	11
74	A geometrically based grid refinement technique for multiphase flows. Computers and Chemical Engineering, 2015, 82, 25-33.	2.0	3
75	Assessment of Integral Thermo-Hydraulic Models for Pipeline Transportation of Dense-Phase and Supercritical CO ₂ . Industrial & Engineering Chemistry Research, 2015, 54, 8587-8599.	1.8	9
76	Modelling heat transfer in flashing CO2fluid upon rapid decompression in pipelines. , 2015, , .		3
77	CO2PipeHaz: Quantitative Hazard Assessment for Next Generation CO2 Pipelines. Energy Procedia, 2014, 63, 2510-2529.	1.8	29
78	Modelling the non-equilibrium two-phase flow during depressurisation of CO 2 pipelines. International Journal of Greenhouse Gas Control, 2014, 30, 9-18.	2.3	45
79	CO2QUEST: Techno-economic Assessment of CO2 Quality Effect on Its Storage and Transport. Energy Procedia, 2014, 63, 2622-2629.	1.8	19
80	An integrated, multi-scale modelling approach for the simulation of multiphase dispersion from accidental CO2 pipeline releases in realistic terrain. International Journal of Greenhouse Gas Control, 2014, 27, 221-238.	2.3	40
81	Modelling three-phase releases of carbon dioxide from high-pressure pipelines. Chemical Engineering Research and Design, 2014, 92, 36-46.	2.7	42
82	Optimal Valve Spacing for Next Generation CO2 Pipelines. Computer Aided Chemical Engineering, 2014, 33, 265-270.	0.3	2
83	A homogeneous relaxation flow model for the full bore rupture of dense phase CO2 pipelines. International Journal of Greenhouse Gas Control, 2013, 17, 349-356.	2.3	61
84	Global sensitivity analysis of the impact of impurities on CO2 pipeline failure. Reliability Engineering and System Safety, 2013, 115, 43-54.	5.1	27
85	An extended Pengâ€Robinson equation of state for carbon dioxide solidâ€vapor equilibrium. , 2013, 3, 136-147.		27
86	Modelling choked flow for CO2 from the dense phase to below the triple point. International Journal of Greenhouse Gas Control, 2013, 19, 552-558.	2.3	24
87	A study of the effects of friction, heat transfer, and stream impurities on the decompression behavior in CO ₂ pipelines., 2012, 2, 369-379.		33
88	Modelling the impact of stream impurities on ductile fractures in CO2 pipelines. Chemical Engineering Science, 2012, 74, 200-210.	1.9	61
89	The economics of firm solar power from Li-ion and vanadium flow batteries in California. MRS Energy & Sustainability, 0, , .	1.3	6