## Teresa Zotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1546775/publications.pdf Version: 2024-02-01



TEDESA ZOTTA

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Aerobic metabolism in the genus <i>Lactobacillus</i> : impact on stress response and potential applications in the food industry. Journal of Applied Microbiology, 2017, 122, 857-869.                                                         | 3.1 | 121       |
| 2  | Diversity of stress tolerance in Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus<br>paraplantarum: A multivariate screening study. International Journal of Food Microbiology, 2010, 144,<br>270-279.                        | 4.7 | 105       |
| 3  | Valorization of cheese whey using microbial fermentations. Applied Microbiology and Biotechnology, 2020, 104, 2749-2764.                                                                                                                       | 3.6 | 97        |
| 4  | Inactivation of ccpA and aeration affect growth, metabolite production and stress tolerance in<br>Lactobacillus plantarum WCFS1. International Journal of Food Microbiology, 2012, 155, 51-59.                                                 | 4.7 | 80        |
| 5  | Tolerance of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus strains to<br>stress factors encountered in food processing and in the gastro-intestinal tract. LWT - Food Science<br>and Technology, 2015, 60, 721-728. | 5.2 | 73        |
| 6  | Molecular and technological characterization of lactic acid bacteria from traditional fermented sausages of Basilicata region (Southern Italy). Meat Science, 2008, 80, 1238-1248.                                                             | 5.5 | 68        |
| 7  | Assessment of Aerobic and Respiratory Growth in the Lactobacillus casei Group. PLoS ONE, 2014, 9, e99189.                                                                                                                                      | 2.5 | 65        |
| 8  | FoodMicrobionet: A database for the visualisation and exploration of food bacterial communities based on network analysis. International Journal of Food Microbiology, 2016, 219, 28-37.                                                       | 4.7 | 65        |
| 9  | Enzymatic activities of lactic acid bacteria isolated from Cornetto di Matera sourdoughs.<br>International Journal of Food Microbiology, 2007, 115, 165-172.                                                                                   | 4.7 | 63        |
| 10 | Diversity of stress responses in dairy thermophilic streptococci. International Journal of Food<br>Microbiology, 2008, 124, 34-42.                                                                                                             | 4.7 | 62        |
| 11 | Functional properties of Lactobacillus plantarum strains: A multivariate screening study. LWT - Food<br>Science and Technology, 2014, 56, 69-76.                                                                                               | 5.2 | 62        |
| 12 | The microbiota of dairy milk: A review. International Dairy Journal, 2020, 107, 104714.                                                                                                                                                        | 3.0 | 58        |
| 13 | High resolution melting analysis (HRM) as a new tool for the identification of species belonging to<br>the Lactobacillus casei group andÂcomparison with species-specific PCRs and multiplex PCR. Food<br>Microbiology, 2015, 46, 357-367.     | 4.2 | 56        |
| 14 | Dynamics of bacterial communities and interaction networks in thawed fish fillets during chilled storage in air. International Journal of Food Microbiology, 2019, 293, 102-113.                                                               | 4.7 | 55        |
| 15 | Acid production, proteolysis, autolytic and inhibitory properties of lactic acid bacteria isolated from pasta filata cheeses: A multivariate screening study. International Dairy Journal, 2008, 18, 81-92.                                    | 3.0 | 53        |
| 16 | Adaptation to Aerobic Environment of Lactobacillus johnsonii/gasseri Strains. Frontiers in<br>Microbiology, 2018, 9, 157.                                                                                                                      | 3.5 | 50        |
| 17 | The microbiota of high-moisture mozzarella cheese produced with different acidification methods.<br>International Journal of Food Microbiology, 2016, 216, 9-17.                                                                               | 4.7 | 49        |
| 18 | Characterization of lactic acid bacteria isolated from sourdoughs for Cornetto, a traditional bread produced in Basilicata (Southern Italy). World Journal of Microbiology and Biotechnology, 2008, 24, 1785-1795.                             | 3.6 | 48        |

TERESA ZOTTA

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Proteolysis in Model Sourdough Fermentations. Journal of Agricultural and Food Chemistry, 2006, 54, 2567-2574.                                                                                         | 5.2 | 45        |
| 20 | A comparison of fluorescent stains for the assessment of viability and metabolic activity of lactic acid bacteria. World Journal of Microbiology and Biotechnology, 2012, 28, 919-927.                 | 3.6 | 43        |
| 21 | Aerobic metabolism and oxidative stress tolerance in the Lactobacillus plantarum group. World<br>Journal of Microbiology and Biotechnology, 2013, 29, 1713-1722.                                       | 3.6 | 42        |
| 22 | Temperature and respiration affect the growth and stress resistance of <i>Lactobacillus plantarum </i> C17. Journal of Applied Microbiology, 2013, 115, 848-858.                                       | 3.1 | 40        |
| 23 | Discrimination of commercial Caciocavallo cheeses on the basis of the diversity of lactic microflora and primary proteolysis. International Dairy Journal, 2005, 15, 1138-1149.                        | 3.0 | 38        |
| 24 | Effect of inactivation of ccpA and aerobic growth in Lactobacillus plantarum: A proteomic perspective. Journal of Proteomics, 2012, 75, 4050-4061.                                                     | 2.4 | 38        |
| 25 | Effect of respirative cultures of Lactobacillus casei on model sourdough fermentation. LWT - Food<br>Science and Technology, 2016, 73, 622-629.                                                        | 5.2 | 37        |
| 26 | Urease production by Streptococcus thermophilus. Food Microbiology, 2008, 25, 113-119.                                                                                                                 | 4.2 | 36        |
| 27 | Technological and safety characterization of coagulase-negative staphylococci from traditionally fermented sausages of Basilicata region (Southern Italy). Meat Science, 2009, 83, 15-23.              | 5.5 | 35        |
| 28 | A comparison of bioinformatic approaches for 16S rRNA gene profiling of food bacterial microbiota.<br>International Journal of Food Microbiology, 2018, 265, 9-17.                                     | 4.7 | 35        |
| 29 | Effect of respirative and catalase-positive Lactobacillus casei adjuncts on the production and quality of Cheddar-type cheese. International Dairy Journal, 2016, 63, 78-87.                           | 3.0 | 34        |
| 30 | Investigation of Factors Affecting Aerobic and Respiratory Growth in the Oxygen-Tolerant Strain<br>Lactobacillus casei N87. PLoS ONE, 2016, 11, e0164065.                                              | 2.5 | 33        |
| 31 | Aerobic and respirative growth of heterofermentative lactic acid bacteria: A screening study. Food<br>Microbiology, 2018, 76, 117-127.                                                                 | 4.2 | 33        |
| 32 | Effect of inactivation of stress response regulators on the growth and survival of Streptococcus thermophilus Sfi39. International Journal of Food Microbiology, 2009, 129, 211-220.                   | 4.7 | 32        |
| 33 | Advancing integration of data on food microbiome studies: FoodMicrobionet 3.1, a major upgrade of the FoodMicrobionet database. International Journal of Food Microbiology, 2019, 305, 108249.         | 4.7 | 32        |
| 34 | Aeration and supplementation with heme and menaquinone affect survival to stresses and antioxidant<br>capability of Lactobacillus caseiÂstrains. LWT - Food Science and Technology, 2015, 60, 817-824. | 5.2 | 30        |
| 35 | Viability staining and detection of metabolic activity of sourdough lactic acid bacteria under stress conditions. World Journal of Microbiology and Biotechnology, 2009, 25, 1119-1124.                | 3.6 | 29        |
| 36 | Biochemical analysis of respiratory metabolism in the heterofermentative <i>Lactobacillus spicheri</i> lactobacillus reuteri. Journal of Applied Microbiology, 2015, 119, 763-775.                     | 3.1 | 29        |

TERESA ZOTTA

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Genotypic diversity of stress response in Lactobacillus plantarum, Lactobacillus paraplantarum and<br>Lactobacillus pentosus. International Journal of Food Microbiology, 2012, 157, 278-285.                                 | 4.7  | 28        |
| 38 | Growth of Lactobacillus rhamnosus 64 in whey permeate and study of the effect of mild stresses on survival to spray drying. LWT - Food Science and Technology, 2015, 63, 322-330.                                             | 5.2  | 27        |
| 39 | A survey of non-starter lactic acid bacteria in traditional cheeses: Culture dependent identification and survival to simulated gastrointestinal transit. International Dairy Journal, 2015, 43, 42-50.                       | 3.0  | 26        |
| 40 | Structure of association networks in food bacterial communities. Food Microbiology, 2018, 73, 49-60.                                                                                                                          | 4.2  | 22        |
| 41 | Metataxonomic and metagenomic approaches for the study of undefined strain starters for cheese manufacture. Critical Reviews in Food Science and Nutrition, 2022, 62, 3898-3912.                                              | 10.3 | 22        |
| 42 | Modelling the growth of <i>Weissella cibaria</i> as a function of fermentation conditions. Journal of Applied Microbiology, 2009, 107, 1528-1535.                                                                             | 3.1  | 21        |
| 43 | Factors affecting gene expression and activity of heme- and manganese-dependent catalases in<br>Lactobacillus casei strains. International Journal of Food Microbiology, 2018, 280, 66-77.                                    | 4.7  | 21        |
| 44 | Theoretical insight into the heat shock response (HSR) regulation in Lactobacillus casei and L.<br>rhamnosus. Journal of Theoretical Biology, 2016, 402, 21-37.                                                               | 1.7  | 19        |
| 45 | Use of unsupervised and supervised artificial neural networks for the identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins. Journal of Microbiological Methods, 2006, 66, 336-346. | 1.6  | 18        |
| 46 | Modified chemically defined medium for enhanced respiratory growth of <i>Lactobacillus<br/>casei</i> and <i>Lactobacillus plantarum</i> groups. Journal of Applied Microbiology, 2015, 119, 776-785.                          | 3.1  | 17        |
| 47 | Effect of Respiratory Growth on the Metabolite Production and Stress Robustness of Lactobacillus casei N87 Cultivated in Cheese Whey Permeate Medium. Frontiers in Microbiology, 2019, 10, 851.                               | 3.5  | 17        |
| 48 | Selection criteria of lactic acid bacteria to be used as starter for sweet and salty leavened baked products. LWT - Food Science and Technology, 2020, 133, 110092.                                                           | 5.2  | 17        |
| 49 | Selection of mutants tolerant of oxidative stress from respiratory cultures of <i>Lactobacillus plantarum </i> C17. Journal of Applied Microbiology, 2014, 116, 632-643.                                                      | 3.1  | 15        |
| 50 | Rapid detection assay for oxygen consumption in the Lactobacillus casei group. Annals of Microbiology, 2014, 64, 1861-1864.                                                                                                   | 2.6  | 14        |
| 51 | Evaluation of a differential medium for the preliminary identification of members of the Lactobacillus plantarum and Lactobacillus casei groups. Annals of Microbiology, 2015, 65, 1649-1658.                                 | 2.6  | 13        |
| 52 | Evolution of microbial counts and chemical and physico-chemical parameters in high-moisture<br>Mozzarella cheese during refrigerated storage. LWT - Food Science and Technology, 2015, 63, 821-827.                           | 5.2  | 13        |
| 53 | Draft Genome Sequence of the Respiration-Competent Strain Lactobacillus casei N87. Genome Announcements, 2016, 4, .                                                                                                           | 0.8  | 13        |
| 54 | Impact of aerobic and respirative life-style on Lactobacillus casei N87 proteome. International Journal of Food Microbiology, 2019, 298, 51-62.                                                                               | 4.7  | 13        |

TERESA ZOTTA

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Microbial changes of natural milk cultures for mozzarella cheese during repeated propagation cycles. LWT - Food Science and Technology, 2016, 65, 572-579.                                                                         | 5.2 | 12        |
| 56 | A review of methods for the inference and experimental confirmation of microbial association networks in cheese. International Journal of Food Microbiology, 2022, 368, 109618.                                                    | 4.7 | 12        |
| 57 | Polymorphism of the phosphoserine phosphatase gene in Streptococcus thermophilus and its potential use for typing and monitoring of population diversity. International Journal of Food Microbiology, 2016, 236, 138-147.          | 4.7 | 10        |
| 58 | Metabolic profiling and stress response of anaerobic and respiratory cultures of Lactobacillus plantarum C17 grown in a chemically defined medium. Annals of Microbiology, 2015, 65, 1639-1648.                                    | 2.6 | 9         |
| 59 | Tween 80 and respiratory growth affect metabolite production and membrane fatty acids inLactobacillus caseiN87. Journal of Applied Microbiology, 2017, 122, 759-769.                                                               | 3.1 | 9         |
| 60 | Starter cultures and preservation liquids modulate consumer liking and shelf life of mozzarella cheese. International Dairy Journal, 2018, 85, 254-262.                                                                            | 3.0 | 9         |
| 61 | Analysis of rpoB polymorphism and PCR-based approaches for the identification of Leuconostoc<br>mesenteroides at the species and subspecies level. International Journal of Food Microbiology, 2020,<br>318, 108474.               | 4.7 | 8         |
| 62 | Selection of Lactiplantibacillus Strains for the Production of Fermented Table Olives.<br>Microorganisms, 2022, 10, 625.                                                                                                           | 3.6 | 8         |
| 63 | FoodMicrobionet v4: A large, integrated, open and transparent database for food bacterial communities. International Journal of Food Microbiology, 2022, 372, 109696.                                                              | 4.7 | 7         |
| 64 | Polymorphisms in stress response genes in Lactobacillus plantarum: implications for classification and heat stress response. Annals of Microbiology, 2015, 65, 297-305.                                                            | 2.6 | 5         |
| 65 | Survey of antibiotic resistance traits in strains of Lactobacillus casei/paracasei/rhamnosus. Annals of<br>Microbiology, 2015, 65, 1763-1769.                                                                                      | 2.6 | 4         |
| 66 | The Effect of Respiration, pH, and Citrate Co-Metabolism on the Growth, Metabolite Production and Enzymatic Activities of Leuconostoc mesenteroides subsp. cremoris E30. Foods, 2022, 11, 535.                                     | 4.3 | 4         |
| 67 | Microbiological Stability and Overall Quality of Ready-to-Heat Meals Based on Traditional Recipes of<br>the Basilicata Region. Foods, 2020, 9, 406.                                                                                | 4.3 | 2         |
| 68 | Probiotics in dairy products: microencapsulation and delivery. , 2022, , 271-285.                                                                                                                                                  |     | 2         |
| 69 | SDS–PAGE patterns of whole cell proteins of Streptococcus thermophilus: impact of strain, growth phase and adaptation and relationship with stress response. World Journal of Microbiology and Biotechnology, 2011, 27, 2529-2537. | 3.6 | 0         |
| 70 | Draft Genome Sequence of <i>Clostridium sporogenes</i> Strain UC9000 Isolated from Raw Milk.<br>Genome Announcements, 2016, 4, .                                                                                                   | 0.8 | 0         |
| 71 | Growth Fitness, Heme Uptake and Genomic Variants in Mutants of Oxygen-tolerant Lacticaseibacillus<br>casei and Lactiplantibacillus plantarum Strains. Microbiological Research, 2022, , 127096.                                    | 5.3 | 0         |