Haichang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1546748/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrogen-Bonded Dopant-Free Hole Transport Material Enables Efficient and Stable Inverted Perovskite Solar Cells. CCS Chemistry, 2022, 4, 3084-3094.	7.8	37
2	Room Temperature Phosphorescent (RTP) Thermoplastic Elastomers with Dual and Variable RTP Emission, Photoâ€Patterning Memory Effect, and Dynamic Deformation RTP Response. Advanced Science, 2022, 9, e2103402.	11.2	40
3	Effectively Unlocking the Potential Molecular Room Temperature Phosphorescence of Pure Carbazole Derivatives. Advanced Optical Materials, 2022, 10, .	7.3	13
4	Evoking ultra-long molecular room temperature phosphorescence of pure carbazole derivatives. Chemical Engineering Journal, 2022, 447, 137458.	12.7	13
5	Side-chain engineering by thymine groups enables hydrogen bond in P-type donor-acceptor polymers with enhanced optoelectronic properties. Dyes and Pigments, 2022, 205, 110565.	3.7	5
6	Hydrogen bonding drives the self-assembling of carbazole-based hole-transport material for enhanced efficiency and stability of perovskite solar cells. Nano Energy, 2022, 101, 107604.	16.0	16
7	Manipulating matrix stacking modes for ultralong-duration organic room-temperature phosphorescence in trace isomer doping systems. Journal of Materials Chemistry C, 2021, 9, 8302-8307.	5.5	10
8	Benzo/Naphthodifuranoneâ€Based Polymers: Effect of Perpendicularâ€Extended Main Chain Ï€â€Conjugation on Organic Fieldâ€Effect Transistor Performances. Macromolecular Rapid Communications, 2021, 42, e2000703.	3.9	16
9	Exposure to different fractions of diesel exhaust PM2.5 induces different levels of pulmonary inflammation and acute phase response. Ecotoxicology and Environmental Safety, 2021, 210, 111871.	6.0	14
10	Hydrogen-Bonded Colorimetric and Fluorescence Chemosensor for Fluoride Anion With High Selectivity and Sensitivity: A Review. Frontiers in Chemistry, 2021, 9, 666450.	3.6	8
11	Sulfonated Dopantâ€Free Holeâ€Transport Material Promotes Interfacial Charge Transfer Dynamics for Highly Stable Perovskite Solar Cells. Advanced Sustainable Systems, 2021, 5, 2100244.	5.3	27
12	Persistent Organic Whiteâ€Emitting Afterglow from Ultralong Thermally Activated Delayed Fluorescence and Roomâ€Temperature Phosphorescence. Advanced Optical Materials, 2021, 9, 2101075.	7.3	20
13	Editorial: Design, Synthesis, and Application of Novel Ï€-Conjugated Materials—Part â…į. Frontiers in Chemistry, 2021, 9, 771438.	3.6	0
14	Gaining New Insights into Trace Guest Doping Role in Manipulating Organic Crystal Phosphorescence. Journal of Physical Chemistry Letters, 2021, 12, 11616-11621.	4.6	11
15	Ï€-Conjugated oligomers based on aminobenzodifuranone and diketopyrrolopyrrole. Dyes and Pigments, 2020, 181, 108552.	3.7	35
16	Editorial: Design, Synthesis, and Application of Novel π-Conjugated Materials. Frontiers in Chemistry, 2020, 8, 634698.	3.6	3
17	Thionation Enhances the Performance of Polymeric Dopantâ€Free Holeâ€Transporting Materials for Perovskite Solar Cells. Advanced Materials Interfaces, 2019, 6, 1901036.	3.7	36
18	Advances in the Stability of Halide Perovskite Nanocrystals. Materials, 2019, 12, 3733.	2.9	33

HAICHANG ZHANG

#	Article	IF	CITATIONS
19	Conjugated Polymers Containing Building Blocks 1,3,4,6-Tetraarylpyrrolo[3,2-b]pyrrole-2,5-dione (isoDPP), Benzodipyrrolidone (BDP) or Naphthodipyrrolidone (NDP): A Review. Polymers, 2019, 11, 1683.	4.5	18
20	Hydrogen-Bonding-Mediated Solid-State Self-Assembled Isoepindolidiones (isoEpi) Crystal for Organic Field-Effect Transistor. Journal of Physical Chemistry C, 2018, 122, 5888-5895.	3.1	25
21	Thionating iso-diketopyrrolopyrrole-based polymers: from p-type to ambipolar field effect transistors with enhanced charge mobility. Polymer Chemistry, 2018, 9, 1807-1814.	3.9	39
22	Touch-sensitive mechanoluminescence crystals comprising a simple purely organic molecule emit bright blue fluorescence regardless of crystallization methods. Chemical Communications, 2018, 54, 5225-5228.	4.1	42
23	One-coat epoxy coating development for the improvement of UV stability by DPP pigments. Dyes and Pigments, 2018, 151, 157-164.	3.7	33
24	9,10-Bis((Z)-2-phenyl-2-(pyridin-2-yl)vinyl)anthracene: Aggregation-induced emission, mechanochromic luminescence, and reversible volatile acids-amines switching. Dyes and Pigments, 2018, 149, 407-414.	3.7	36
25	Synthesis and remarkable mechano- and thermo-hypsochromic luminescence of a new type of DPP-based derivative. Journal of Materials Chemistry C, 2018, 6, 1377-1383.	5.5	37
26	High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction. ACS Nano, 2018, 12, 158-167.	14.6	321
27	A simple and versatile strategy for realizing bright multicolor mechanoluminescence. Chemical Communications, 2018, 54, 8206-8209.	4.1	33
28	<i>N</i> -Alkylcarbazoles: homolog manipulating long-lived room-temperature phosphorescence. Journal of Materials Chemistry C, 2018, 6, 8984-8989.	5.5	23
29	1,4-Diketo-pyrrolo[3,4-c]pyrroles (DPPs) based insoluble polymer films with lactam hydrogens as renewable fluoride anion chemosensor. Polymer, 2018, 149, 266-272.	3.8	23
30	Thionating iso-diketopyrrolopyrrole-based polymers: from p-type to ambipolar field effect transistors with enhanced charge mobility. Polymer Chemistry, 2018, 9, 1807-1814.	3.9	3
31	Naphthodipyrrolidone (NDP) based conjugated polymers with high electron mobility and ambipolar transport properties. Polymer Chemistry, 2017, 8, 3255-3260.	3.9	21
32	Unusual mechanohypsochromic luminescence and unique bidirectional thermofluorochromism of long-alkylated simple DPP dyes. Journal of Materials Chemistry C, 2017, 5, 5994-5998.	5.5	38
33	Crystalline Organic Pigment-Based Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 21891-21899.	8.0	55
34	Phenothiazin-N-yl-capped 1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole exhibiting strong two-photon absorption and aggregation-enhanced one- and two-photon excitation red fluorescence. RSC Advances, 2017, 7, 30610-30617.	3.6	8
35	Polymers Based on Benzodipyrrolidone and Naphthodipyrrolidone with Latent Hydrogenâ€Bonding on the Main Chain. Macromolecular Chemistry and Physics, 2017, 218, 1600617.	2.2	30
36	1,6-Naphthodipyrrolidone-based donor–acceptor polymers with low bandgap. Polymer, 2015, 60, 215-220.	3.8	12

HAICHANG ZHANG

#	Article	IF	CITATIONS
37	A comparative study of polymers containing naphthodifuranone and benzodifuranone units in the main chain. Polymer Chemistry, 2014, 5, 646-652.	3.9	13
38	Conjugated polymers containing benzo- and naphthodione units in the main chain. Polymer Chemistry, 2014, 5, 6391-6406.	3.9	18
39	1,6-Naphthodione-based monomers and polymers. Polymer Chemistry, 2014, 5, 3754-3757.	3.9	17
40	Aminobenzodione-based polymers with low bandgaps and solvatochromic behavior. Polymer Chemistry, 2014, 5, 3817.	3.9	16
41	Naphthodifuranone-Based Monomers and Polymers. Macromolecules, 2013, 46, 5842-5849.	4.8	16
42	Synthesis and characterization of 1,3,4,6-tetraarylpyrrolo[3,2-b]-pyrrole-2,5-dione (isoDPP)-based donor–acceptor polymers with low band gap. Polymer Chemistry, 2013, 4, 4682.	3.9	27
43	Dibutylaminophenyl- and/or Pyridinyl-Capped 2,6,9,10-Tetravinylanthracene Cruciforms: Synthesis and Aggregation-Enhanced One- and Two-Photon Excited Fluorescence. Journal of Physical Chemistry C, 2013, 117, 8404-8410.	3.1	28
44	N-Monoalkylated 1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrroles as effective one- and two-photon fluorescence chemosensors for fluoride anions. Journal of Materials Chemistry A, 2013, 1, 5172.	10.3	68
45	Synthesis, characterization, and large twoâ€photon absorption crossâ€sections of solid redâ€emitting 1,4â€diketoâ€3,6â€diphenylpyrrolo [3,4â€ <i>c</i>]pyrrole/3,6â€carbazole/terfluorene copolymers. Journal of Polymer Science Part A, 2011, 49, 3048-3057.	2.3	22
46	Synthesis, one―and twoâ€photon properties of poly[9,10â€bis(3,4â€bis(2â€ethylhexylâ€oxy)phenyl)â€2,6â€anthracenevinyleneâ€ <i>altâ€N</i> â€octylâ€3,6â€ Journal of Polymer Science Part A, 2010, 48, 463-470.	∤22,7â€car	ba zo levinyler
47	Synthesis and Electrooptic Properties of Poly(2,6â€anthracenevinylene)s. Macromolecular Rapid Communications, 2008, 29, 1415-1420.	3.9	11
48	From Transistors to Phototransistors by Tailoring the Polymer Stacking. Advanced Electronic Materials, 0, , 2200019.	5.1	5
49	Flexible Organic Photovoltaics with Starâ€Shaped Nonfullerene Acceptors End Capped with Indene Malononitrile and Barbiturate Derivatives. Energy Technology, 0, , 2200264.	3.8	1