
Marta Nunes da Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1546482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intraspecific variation of anatomical and chemical defensive traits in Maritime pine (Pinus pinaster) as factors in susceptibility to the pinewood nematode (Bursaphelenchus xylophilus). Trees - Structure and Function, 2015, 29, 663-673.	1.9	49
2	Susceptibility to the pinewood nematode (PWN) of four pine species involved in potential range expansion across Europe. Tree Physiology, 2015, 35, 987-999.	3.1	45
3	Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium. Science of the Total Environment, 2014, 493, 757-765.	8.0	31
4	Chitosan as a biocontrol agent against the pinewood nematode (<i>Bursaphelenchus xylophilus</i>). Forest Pathology, 2014, 44, 420-423.	1.1	30
5	A strategy to potentiate Cd phytoremediation by saltmarsh plants – Autochthonous bioaugmentation. Journal of Environmental Management, 2014, 134, 136-144.	7.8	25
6	Evaluation of the ability of two plants for the phytoremediation of Cd in salt marshes. Estuarine, Coastal and Shelf Science, 2014, 141, 78-84.	2.1	23
7	Susceptibility evaluation of <i><scp>P</scp>icea abies</i> and <i><scp>C</scp>upressus lusitanica</i> to the pine wood nematode (<i><scp>B</scp>ursaphelenchus xylophilus</i>). Plant Pathology, 2013, 62, 1398-1406.	2.4	20
8	Mitigation of climate change and environmental hazards in plants: Potential role of the beneficial metalloid silicon. Journal of Hazardous Materials, 2021, 416, 126193.	12.4	19
9	Traumatic resin ducts induced by methyl jasmonate in Pinus spp. Trees - Structure and Function, 2021, 35, 557-567.	1.9	17
10	Chitosan increases Pinus pinaster tolerance to the pinewood nematode (Bursaphelenchus xylophilus) by promoting plant antioxidative metabolism. Scientific Reports, 2021, 11, 3781.	3.3	16
11	Role of methyl jasmonate and salicylic acid in kiwifruit plants further subjected to Psa infection: biochemical and genetic responses. Plant Physiology and Biochemistry, 2021, 162, 258-266.	5.8	16
12	Defenceâ€related pathways, phytohormones and primary metabolism are key players in kiwifruit plant tolerance to <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> . Plant, Cell and Environment, 2022, 45, 528-541.	5.7	15
13	A biofertilizer with diazotrophic bacteria and a filamentous fungus increases Pinus pinaster tolerance to the pinewood nematode (Bursaphelenchus xylophilus). Biological Control, 2019, 132, 72-80.	3.0	13
14	Non-Essential Elements and Their Role in Sustainable Agriculture. Agronomy, 2022, 12, 888.	3.0	11
15	Early Pathogen Recognition and Antioxidant System Activation Contributes to Actinidia arguta Tolerance Against Pseudomonas syringae Pathovars actinidiae and actinidifoliorum. Frontiers in Plant Science, 2020, 11, 1022.	3.6	10
16	Response of two salt marsh plants to short- and long-term contamination of sediment with cadmium. Journal of Soils and Sediments, 2015, 15, 722-731.	3.0	8
17	Exploring the expression of defence-related genes in Actinidia spp. after infection with Pseudomonas syringae pv. actinidiae and pv. actinidifoliorum: first steps. European Journal of Horticultural Science, 2019, 84, 206-212.	0.7	6
18	Salt marsh plants as key mediators on the level of cadmium impact on microbial denitrification. Environmental Science and Pollution Research, 2014, 21, 10270-10278.	5.3	5

#	Article	IF	CITATIONS
19	Influence of the nitrogen source on the tolerance of <i>Actinidia chinensis</i> to <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> . Acta Horticulturae, 2022, , 103-110.	0.2	2
20	Unravelling Actinidia molecular mechanisms against Pseudomonas syringae pv. actinidiae and P. syringae pv. actinidifoliorum – first steps. Acta Horticulturae, 2018, , 307-314.	0.2	0