Xuefang Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1546321/publications.pdf

Version: 2024-02-01

567281 610901 24 973 15 24 citations h-index g-index papers 24 24 24 1265 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chemical Society Reviews, 2015, 44, 5680-5742.	38.1	441
2	CREDVW-Linked Polymeric Micelles As a Targeting Gene Transfer Vector for Selective Transfection and Proliferation of Endothelial Cells. ACS Applied Materials & Interfaces, 2015, 7, 12128-12140.	8.0	54
3	Multifunctional Gene Carriers with Enhanced Specific Penetration and Nucleus Accumulation to Promote Neovascularization of HUVECs in Vivo. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35613-35627.	8.0	46
4	CAGW Peptide- and PEG-Modified Gene Carrier for Selective Gene Delivery and Promotion of Angiogenesis in HUVECs in Vivo. ACS Applied Materials & Interfaces, 2017, 9, 4485-4497.	8.0	45
5	Mixed micelles obtained by co-assembling comb-like and grafting copolymers as gene carriers for efficient gene delivery and expression in endothelial cells. Journal of Materials Chemistry B, 2017, 5, 1673-1687.	5.8	37
6	Selfâ€Assembly of Polyethylenimineâ€Modified Biodegradable Complex Micelles as Gene Transfer Vector for Proliferation of Endothelial Cells. Macromolecular Chemistry and Physics, 2014, 215, 2463-2472.	2.2	34
7	Biodegradable PEI modified complex micelles as gene carriers with tunable gene transfection efficiency for ECs. Journal of Materials Chemistry B, 2016, 4, 997-1008.	5.8	34
8	Red-blood-cell-mimetic gene delivery systems for long circulation and high transfection efficiency in ECs. Journal of Materials Chemistry B, 2018, 6, 5975-5985.	5.8	32
9	Star-shaped copolymer grafted PEI and REDV as a gene carrier to improve migration of endothelial cells. Biomaterials Science, 2017, 5, 511-522.	5.4	31
10	Electrospun PCL-PIBMD/SF blend scaffolds with plasmid complexes for endothelial cell proliferation. RSC Advances, 2017, 7, 39452-39464.	3.6	30
11	Oligohistidine and targeting peptide functionalized TAT-NLS for enhancing cellular uptake and promoting angiogenesis in vivo. Journal of Nanobiotechnology, 2018, 16, 29.	9.1	30
12	Delivery of benzoylaconitine using biodegradable nanoparticles to suppress inflammation via regulating NF-κB signaling. Colloids and Surfaces B: Biointerfaces, 2020, 191, 110980.	5.0	23
13	POSS-cored and peptide functionalized ternary gene delivery systems with enhanced endosomal escape ability for efficient intracellular delivery of plasmid DNA. Journal of Materials Chemistry B, 2018, 6, 4251-4263.	5.8	20
14	Multifunctional REDV-G-TAT-G-NLS-Cys peptide sequence conjugated gene carriers to enhance gene transfection efficiency in endothelial cells. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110510.	5.0	17
15	5-Boronopicolinic acid-functionalized polymeric nanoparticles for targeting drug delivery and enhanced tumor therapy. Materials Science and Engineering C, 2021, 119, 111553.	7.3	16
16	Core/Shell Gene Carriers with Different Lengths of PLGA Chains to Transfect Endothelial Cells. Langmuir, 2017, 33, 13315-13325.	3.5	14
17	Ionic Conductive Organohydrogel With Ultrastretchability, Self-Healable and Freezing-Tolerant Properties for Wearable Strain Sensor. Frontiers in Chemistry, 2021, 9, 758844.	3.6	14
18	CAG W Modified Polymeric Micelles with Different Hydrophobic Cores for Efficient Gene Delivery and Capillary-like Tube Formation. ACS Biomaterials Science and Engineering, 2018, 4, 2870-2878.	5.2	13

#	Article	lF	CITATION
19	Co-self-assembly of cationic microparticles to deliver pEGFP-ZNF580 for promoting the transfection and migration of endothelial cells. International Journal of Nanomedicine, 2017, Volume 12, 137-149.	6.7	12
20	Multifunctional Gene Carriers Labeled by Perylene Diimide Derivative as Fluorescent Probe for Tracking Gene Delivery. Macromolecular Rapid Communications, 2019, 40, 1800916.	3.9	11
21	Biomimetic and responsive nanoparticles loading JQ1 for dual-targeting treatment of vascular restenosis via multiple actions. Chemical Engineering Journal, 2022, 431, 133452.	12.7	8
22	Bovine serum albumin-based biomimetic gene complexes with specificity facilitate rapid re-endothelialization for anti-restenosis. Acta Biomaterialia, 2022, 142, 221-241.	8.3	6
23	PEI modified biodegradable complex micelles as gene transfer vector for proliferation of ECs. Journal of Controlled Release, 2015, 213, e60.	9.9	3
24	REDV-linked biodegradable polymeric micelles as the transfer vector of ZNF580 for the proliferation of endothelial cells. Journal of Controlled Release, 2015, 213, e123.	9.9	2