Jun Sang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1545999/publications.pdf

Version: 2024-02-01

759233 794594 20 387 12 19 citations h-index g-index papers 20 20 20 378 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Jolkinolide B sensitizes bladder cancer to mTOR inhibitors via dual inhibition of Akt signaling and autophagy. Cancer Letters, 2022, 526, 352-362.	7.2	18
2	Structurally diverse triterpenoids with cytotoxicity from Euphorbia hypericifolia. Fìtoterapìâ, 2021, 151, 104888.	2.2	9
3	Jolkinolide B targets thioredoxin and glutathione systems to induce ROS-mediated paraptosis and apoptosis in bladder cancer cells. Cancer Letters, 2021, 509, 13-25.	7.2	43
4	Euphanoids A and B, two new lathyrane diterpenoids with nitric oxide (NO) inhibitory activity from <i>Euphorbia kansuensis</i> . Natural Product Research, 2021, 35, 4402-4408.	1.8	10
5	Ingol diterpenoids as P-glycoprotein-dependent multidrug resistance (MDR) reversal agents from Euphorbia marginata. Bioorganic Chemistry, 2020, 95, 103546.	4.1	16
6	Jatrofolianes A and B: Two Highly Modified Lathyrane Diterpenoids from <i>Jatropha gossypiifolia</i> . Organic Letters, 2020, 22, 106-109.	4.6	19
7	19- <i>nor</i> -, 20- <i>nor</i> -, and <i>tetranor</i> -Halimane-Type Furanoditerpenoids from <i>Croton crassifolius</i> -, Journal of Natural Products, 2020, 83, 255-267.	3.0	11
8	Diterpenoids from Euphorbia royleana reverse P-glycoprotein-mediated multidrug resistance in cancer cells. Phytochemistry, 2020, 176, 112395.	2.9	28
9	Euphorkanlide A, a Highly Modified Ingenane Diterpenoid with a C ₂₄ Appendage from <i>Euphorbia kansuensis</i> . Organic Letters, 2019, 21, 4128-4131.	4.6	31
10	Combination of a deep eutectic solvent and macroporous resin for green recovery of anthocyanins from <i>Nitraria tangutorun</i> Bobr. fruit. Separation Science and Technology, 2019, 54, 3082-3090.	2.5	9
11	Anthocyanins from Nitraria tangutorun: qualitative and quantitative analyses, antioxidant and anti-inflammatory activities and their stabilities as affected by some phenolic acids. Journal of Food Measurement and Characterization, 2019, 13, 421-430.	3.2	5
12	Green Approach for Sample Preparation and Determination of Anthocyanins from Lycium ruthenicum Murr. Using a Î ² -Cyclodextrin-Based Extraction Method Coupled with UPLC-DAD Analysis. Food Analytical Methods, 2018, 11, 2141-2148.	2.6	13
13	Deep eutectic solvent-based extraction coupled with green two-dimensional HPLC-DAD-ESI-MS/MS for the determination of anthocyanins from <i>Lycium ruthenicum</i> Murr. fruit. Analytical Methods, 2018, 10, 1247-1257.	2.7	41
14	Development of a green twoâ€dimensional <scp>HPLC</scp> â€ <scp>DAD</scp> / <scp>ESI</scp> â€ <scp>MS</scp> method for the determination of anthocyanins from <i>Prunus cerasifera</i> var. <i>atropurpurea</i> leaf and improvement of their stability in energy drinks. International Journal of Food Science and Technology, 2018, 53, 1494-1502.	2.7	16
15	Extraction and characterization of anthocyanins from Nitraria tangutorun bobr. dry fruit and evaluation of their stability in aqueous solution and taurine-contained beverage. Journal of Food Measurement and Characterization, 2018, 12, 937-948.	3.2	6
16	An approach for extraction, purification, characterization and quantitation of acylated-anthocyanins from Nitraria tangutorun Bobr. fruit. Journal of Food Measurement and Characterization, 2018, 12, 45-55.	3.2	13
17	Partition Behaviors of Different Polar Anthocyanins in Aqueous Two-Phase Systems and Extraction of Anthocyanins from Nitraria tangutorun Bobr. and Lycium ruthenicum Murr Food Analytical Methods, 2018, 11, 980-991.	2.6	17
18	\hat{l}^2 -Cyclodextrin-assisted extraction and green chromatographic analysis of Hibiscus sabdariffa L. anthocyanins and the effects of gallic/ferulic/caffeic acids on their stability in beverages. Journal of Food Measurement and Characterization, 2018, 12, 2475-2483.	3.2	9

#	Article	IF	CITATION
19	Development and validation of green chromatography for the determination of anthocyanins in haskap berry, mulberry and blackberry. Analytical Methods, 2017, 9, 2535-2545.	2.7	15
20	Extraction optimization and identification of anthocyanins from Nitraria tangutorun Bobr. seed meal and establishment of a green analytical method of anthocyanins. Food Chemistry, 2017, 218, 386-395.	8.2	58