Song Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1545347/publications.pdf Version: 2024-02-01

SONC CHEN

#	Article	IF	CITATIONS
1	Highly Stable SnO ₂ -Based Quantum-Dot Light-Emitting Diodes with the Conventional Device Structure. ACS Nano, 2022, 16, 9631-9639.	14.6	14
2	Luminescence and Stability Enhancement of CsPbBr ₃ Perovskite Quantum Dots through Surface Sacrificial Coating. Advanced Optical Materials, 2021, 9, 2100474.	7.3	22
3	Perovskite Solar Cells with Front Surface Gradient. Advanced Energy Materials, 2021, 11, 2101080.	19.5	11
4	Nanocrystalâ€enabled front surface bandgap gradient for the reduction of surface recombination in in inverted perovskite solar cells. Solar Rrl, 2021, 5, 2100489.	5.8	3
5	Perovskite Quantum Dots with Ultrahigh Solid-State Photoluminescence Quantum Efficiency, Superior Stability, and Uncompromised Electrical Conductivity. Journal of Physical Chemistry Letters, 2021, 12, 9115-9123.	4.6	6
6	Structure influence of alkyl chains of thienothiophene-porphyrins on the performance of organic solar cells. Materials Reports Energy, 2021, 1, 100066.	3.2	2
7	Direct Observation of the Charge Transfer States from a Non-Fullerene Organic Solar Cell with a Small Driving Force. Journal of Physical Chemistry Letters, 2021, 12, 10595-10602.	4.6	12
8	Highlyâ€Transparent and Trueâ€Colored Semitransparent Indoor Photovoltaic Cells. Small Methods, 2020, 4, 2000136.	8.6	28
9	Hierarchical Assembly of Nanocellulose into Filaments by Flow-Assisted Alignment and Interfacial Complexation: Conquering the Conflicts between Strength and Toughness. ACS Applied Materials & Interfaces, 2020, 12, 32090-32098.	8.0	29
10	Positive Aging Effect of ZnO Nanoparticles Induced by Surface Stabilization. Journal of Physical Chemistry Letters, 2020, 11, 5863-5870.	4.6	34
11	Origin of Subthreshold Turn-On in Quantum-Dot Light-Emitting Diodes. ACS Nano, 2019, 13, 8229-8236.	14.6	46
12	Tuning electronic properties of molecular acceptor-ï€-porphyrin-ï€-acceptor donors via ï€-linkage structural engineering. Organic Electronics, 2019, 73, 146-151.	2.6	8
13	Bis[di(4-methoxyphenyl)amino]carbazole-capped indacenodithiophenes as hole transport materials for highly efficient perovskite solar cells: the pronounced positioning effect of a donor group on the cell performance. Journal of Materials Chemistry A, 2019, 7, 10200-10205.	10.3	30
14	Charge transfer-induced photoluminescence in ZnO nanoparticles. Nanoscale, 2019, 11, 8736-8743.	5.6	48
15	On the degradation mechanisms of quantum-dot light-emitting diodes. Nature Communications, 2019, 10, 765.	12.8	167
16	Designâ€ŧoâ€Đevice Approach Affords Panchromatic Co‣ensitized Solar Cells. Advanced Energy Materials, 2019, 9, 1802820.	19.5	40
17	<i>î²</i> â€Functionalized Imidazoleâ€Fused Porphyrinâ€Donorâ€Based Dyes: Effect of Ï€â€Linker and Acceptor o Optoelectronic and Photovoltaic Properties. ChemistrySelect, 2018, 3, 2558-2564.	on 1.5	11
18	High-detectivity panchromatic photodetectors for the near infrared region based on a dimeric porphyrin small molecule. Journal of Materials Chemistry C, 2018, 6, 3341-3345.	5.5	37

Song Chen

#	Article	IF	CITATIONS
19	Phenylene-bridged perylenediimide-porphyrin acceptors for non-fullerene organic solar cells. Sustainable Energy and Fuels, 2018, 2, 2616-2624.	4.9	30
20	Porphyrin-based thick-film bulk-heterojunction solar cells for indoor light harvesting. Journal of Materials Chemistry C, 2018, 6, 9111-9118.	5.5	67
21	6â€2: <i>Invited Paper</i> : Key Challenges towards the Commercialization of Quantumâ€Dot Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2017, 48, 55-57.	0.3	15
22	Study of Arylamine-Substituted Porphyrins as Hole-Transporting Materials in High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 13231-13239.	8.0	97
23	Multiple electron transporting layers and their excellent properties based on organic solar cell. Scientific Reports, 2017, 7, 9571.	3.3	20
24	A visible-near-infrared absorbing A–π ₂ –D–π ₁ –D–π ₂ –A type dimeric-porphyrin donor for high-performance organic solar cells. Journal of Materials Chemistry A, 2017, 5, 25460-25468.	10.3	45
25	On the Study of Exciton Binding Energy with Direct Charge Generation in Photovoltaic Polymers. Advanced Electronic Materials, 2016, 2, 1600200.	5.1	45
26	New Terthiophene-Conjugated Porphyrin Donors for Highly Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 30176-30183.	8.0	61
27	High efficiency solution-processed thin-film Cu(In,Ga)(Se,S) ₂ solar cells. Energy and Environmental Science, 2016, 9, 3674-3681.	30.8	105
28	Structural engineering of porphyrin-based small molecules as donors for efficient organic solar cells. Chemical Science, 2016, 7, 4301-4307.	7.4	72
29	Solution-processed new porphyrin-based small molecules as electron donors for highly efficient organic photovoltaics. Chemical Communications, 2015, 51, 14439-14442.	4.1	66
30	Improved Photovoltaic Properties of Donor–Acceptor Copolymers by Introducing Quinoxalino[2,3- <i>b</i> ′]porphyrin as a Light-Harvesting Unit. Macromolecules, 2015, 48, 287-296.	4.8	38
31	Dielectric Effect on the Photovoltage Loss in Organic Photovoltaic Cells. Advanced Materials, 2014, 26, 6125-6131.	21.0	95
32	Cupric oxide nanowires assembled by nanoparticles in situ with enhancing electrocatalytic oxidation of ascorbic acid. Applied Surface Science, 2014, 292, 291-296.	6.1	8
33	Defect-Induced Loss Mechanisms in Polymer–Inorganic Planar Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 7215-7218.	8.0	51
34	Hole injection polymer effect on degradation of organic light-emitting diodes. Organic Electronics, 2013, 14, 2518-2522.	2.6	26
35	Properties of interlayer for organic photovoltaics. Materials Today, 2013, 16, 424-432.	14.2	168
36	Synthesis and characterization of porphyrinâ€based Dâ€ï€â€A conjugated polymers for polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 2243-2251.	2.3	12

SONG CHEN

#	Article	IF	CITATIONS
37	Energy Level Alignment and Subâ€Bandgap Charge Generation in Polymer:Fullerene Bulk Heterojunction Solar Cells. Advanced Materials, 2013, 25, 2434-2439.	21.0	35
38	Solutionâ€Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells. Advanced Functional Materials, 2013, 23, 2993-3001.	14.9	461
39	Loss Mechanisms in Thickâ€Film Lowâ€Bandgap Polymer Solar Cells. Advanced Energy Materials, 2013, 3, 909-916.	19.5	52
40	Energy Level Alignment and Subâ€Bandgap Charge Generation in Polymer:Fullerene Bulk Heterojunction Solar Cells (Adv. Mater. 17/2013). Advanced Materials, 2013, 25, 2433-2433.	21.0	1
41	Inverted Polymer Solar Cells. IEEE Photonics Journal, 2012, 4, 625-628.	2.0	6
42	Metal oxides for interface engineering in polymer solar cells. Journal of Materials Chemistry, 2012, 22, 24202.	6.7	331
43	Solution processed multilayer cadmium-free blue/violet emitting quantum dots light emitting diodes. Applied Physics Letters, 2012, 101, 053303.	3.3	39
44	High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells. Nature Photonics, 2012, 6, 115-120.	31.4	903
45	Inverted Polymer Solar Cells with Reduced Interface Recombination. Advanced Energy Materials, 2012, 2, 1333-1337.	19.5	210
46	Dithienogermole As a Fused Electron Donor in Bulk Heterojunction Solar Cells. Journal of the American Chemical Society, 2011, 133, 10062-10065.	13.7	693
47	Photoâ€Carrier Recombination in Polymer Solar Cells Based on P3HT and Siloleâ€Based Copolymer. Advanced Energy Materials, 2011, 1, 963-969.	19.5	52
48	Understanding the performance and loss-mechanisms in donor–acceptor polymer based solar cells: Photocurrent generation, charge separation and carrier transport. Solar Energy Materials and Solar Cells, 2011, 95, 2502-2510.	6.2	16

4