Giuseppe de Vito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1545259/publications.pdf Version: 2024-02-01

CHISEDDE DE VITO

#	Article	IF	CITATIONS
1	Two-Photon Lithography of 3D Nanocomposite Piezoelectric Scaffolds for Cell Stimulation. ACS Applied Materials & Interfaces, 2015, 7, 25574-25579.	8.0	113
2	Piezoelectric barium titanate nanostimulators for the treatment of glioblastoma multiforme. Journal of Colloid and Interface Science, 2019, 538, 449-461.	9.4	75
3	Immune response in peripheral axons delays disease progression in SOD1G93A mice. Journal of Neuroinflammation, 2016, 13, 261.	7.2	63
4	Cytocompatibility evaluation of gum Arabic-coated ultra-pure boron nitride nanotubes on human cells. Nanomedicine, 2014, 9, 773-788.	3.3	61
5	Ultrasound-responsive nutlin-loaded nanoparticles for combined chemotherapy and piezoelectric treatment of glioblastoma cells. Acta Biomaterialia, 2022, 139, 218-236.	8.3	37
6	Rotating-polarization CARS microscopy: combining chemical and molecular orientation sensitivity. Optics Express, 2012, 20, 29369.	3.4	32
7	Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts. International Journal of Nanomedicine, 2015, 10, 433.	6.7	32
8	Age-related changes in the function and structure of the peripheral sensory pathway in mice. Neurobiology of Aging, 2016, 45, 136-148.	3.1	30
9	Removing striping artifacts in light-sheet fluorescence microscopy: a review. Progress in Biophysics and Molecular Biology, 2022, 168, 52-65.	2.9	29
10	Flexible Multi-Beam Light-Sheet Fluorescence Microscope for Live Imaging Without Striping Artifacts. Frontiers in Neuroanatomy, 2019, 13, 7.	1.7	25
11	Barium titanate core – gold shell nanoparticles for hyperthermia treatments. International Journal of Nanomedicine, 2013, 8, 2319.	6.7	24
12	RP-CARS: label-free optical readout of the myelin intrinsic healthiness. Optics Express, 2014, 22, 13733.	3.4	24
13	Dual-beam confocal light-sheet microscopy via flexible acousto-optic deflector. Journal of Biomedical Optics, 2019, 24, 1.	2.6	22
14	RP ARS reveals molecular spatial order anomalies in myelin of an animal model of Krabbe disease. Journal of Biophotonics, 2017, 10, 385-393.	2.3	17
15	Effects of excitation light polarization on fluorescence emission in two-photon light-sheet microscopy. Biomedical Optics Express, 2020, 11, 4651.	2.9	16
16	Fast whole-brain imaging of seizures in zebrafish larvae by two-photon light-sheet microscopy. Biomedical Optics Express, 2022, 13, 1516.	2.9	16
17	Combining Optogenetic Stimulation and Motor Training Improves Functional Recovery and Perilesional Cortical Activity. Neurorehabilitation and Neural Repair, 2022, 36, 107-118.	2.9	12
18	A largeâ€field polarisationâ€resolved laser scanning microscope: applications to CARS imaging. Journal of Microscopy, 2015, 260, 194-199.	1.8	9

GIUSEPPE DE VITO

#	Article	IF	CITATIONS
19	Reconstruction scheme for excitatory and inhibitory dynamics with quenched disorder: application to zebrafish imaging. Journal of Computational Neuroscience, 2021, 49, 159-174.	1.0	7
20	Femtosecond-Laser-Pulse Characterization and Optimization for CARS Microscopy. PLoS ONE, 2016, 11, e0156371.	2.5	6
21	Multimodal Characterization of Seizures in Zebrafish Larvae. Biomedicines, 2022, 10, 951.	3.2	6
22	Effect of scattering on coherent anti-Stokes Raman scattering (CARS) signals. Optics Express, 2017, 25, 8638.	3.4	5
23	Powerâ€effective scanning with <scp>AODs</scp> for <scp>3D</scp> optogenetic applications. Journal of Biophotonics, 2022, 15, e202100256.	2.3	5
24	Two-photon high-speed light-sheet volumetric imaging of brain activity during sleep in zebrafish larvae. , 2020, , .		4
25	Effects of fixatives on myelin molecular order probed with RP-CARS microscopy. Applied Optics, 2020, 59, 1756.	1.8	4
26	Two-photon light-sheet microscopy for high-speed whole-brain functional imaging of zebrafish neuronal physiology and pathology. , 2020, , .		4
27	Fast signal analysis in Rotating-Polarization CARS microscopy. Optical Data Processing and Storage, 2014, 1, .	3.3	2
28	Direct activation of zebrafish neurons by ultrasonic stimulation revealed by whole CNS calcium imaging. Journal of Neural Engineering, 2020, 17, 056033.	3.5	2
29	All-optical readout and stimulation of cortical activity during optogenetically-triggered motor task in awake mice (Conference Presentation). , 2019, , .		О
30	Full-optical stimulation and readout of neuronal activity during optogenetically-evoked movements in awake mice. , 2019, , .		0
31	Mesoscale imaging of neuronal activity coupled with light-evoked motor mapping reveal movement-specific spatiotemporal patterns of cortical activation in awake mice. , 2020, , .		0
32	The importance of the excitation light polarization state for the optimization of the signal levels in two-photon light-sheet microscopy. , 0, , .		0