Michelle L Kovarik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1545091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Micro Total Analysis Systems for Cell Biology and Biochemical Assays. Analytical Chemistry, 2012, 84, 516-540.	3.2	237
2	Micro Total Analysis Systems: Fundamental Advances and Applications in the Laboratory, Clinic, and Field. Analytical Chemistry, 2013, 85, 451-472.	3.2	193
3	Effect of Conical Nanopore Diameter on Ion Current Rectification. Journal of Physical Chemistry B, 2009, 113, 15960-15966.	1.2	161
4	Nanofluidics in Lab-on-a-Chip Devices. Analytical Chemistry, 2009, 81, 7133-7140.	3.2	110
5	Measuring enzyme activity in single cells. Trends in Biotechnology, 2011, 29, 222-230.	4.9	84
6	Surface-Charge Induced Ion Depletion and Sample Stacking near Single Nanopores in Microfluidic Devices. Journal of the American Chemical Society, 2008, 130, 8614-8616.	6.6	71
7	Amperometric determination of nitric oxide derived from pulmonary artery endothelial cells immobilized in a microchip channel. Analyst, The, 2004, 129, 995.	1.7	61
8	Fabrication of carbon microelectrodes with a micromolding technique and their use in microchip-based flow analyses. Analyst, The, 2004, 129, 400.	1.7	60
9	Integrated Nanopore/Microchannel Devices for ac Electrokinetic Trapping of Particles. Analytical Chemistry, 2008, 80, 657-664.	3.2	59
10	Attoliter-Scale Dispensing in Nanofluidic Channels. Analytical Chemistry, 2007, 79, 1655-1660.	3.2	46
11	Review of Student-Built Spectroscopy Instrumentation Projects. Journal of Chemical Education, 2020, 97, 2185-2195.	1.1	45
12	Integration of a carbon microelectrode with a microfabricated palladium decoupler for use in microchip capillary electrophoresis/ electrochemistry. Electrophoresis, 2005, 26, 202-210.	1.3	43
13	Survey of the Undergraduate Analytical Chemistry Curriculum. Journal of Chemical Education, 2022, 99, 2317-2326.	1.1	26
14	Microfluidic Chemical Cytometry of Peptide Degradation in Single Drug-Treated Acute Myeloid Leukemia Cells. Analytical Chemistry, 2013, 85, 4991-4997.	3.2	25
15	Microchannel-Nanopore Device for Bacterial Chemotaxis Assays. Analytical Chemistry, 2010, 82, 9357-9364.	3.2	16
16	Use of primary literature in the undergraduate analytical class. Analytical and Bioanalytical Chemistry, 2016, 408, 3045-3049.	1.9	16
17	Fabrication of Three-Dimensional Micro- and Nanoscale Features with Single-Exposure Photolithography. Analytical Chemistry, 2006, 78, 5214-5217.	3.2	11
18	Response of single leukemic cells to peptidase inhibitor therapy across time and dose using a microfluidic device. Integrative Biology (United Kingdom), 2014, 6, 164-174.	0.6	11

MICHELLE L KOVARIK

#	Article	IF	CITATIONS
19	Collaborative Learning Exercises for Teaching Protein Mass Spectrometry. Journal of Chemical Education, 2019, 96, 905-911.	1.1	10
20	Leveraging the Analytical Chemistry Primary Literature for Authentic, Integrated Content Knowledge and Process Skill Development. Journal of Chemical Education, 2022, 99, 1238-1245.	1.1	10
21	Sample transport and electrokinetic injection in a microchip device for chemical cytometry. Electrophoresis, 2011, 32, 3180-3187.	1.3	8
22	Microfluidic single-cell analysis of oxidative stress in <i>Dictyostelium discoideum</i> . Analyst, The, 2018, 143, 3643-3650.	1.7	5
23	Analytical chemistry research at primarily undergraduate institutions: training tomorrow's investigators. Analytical Methods, 2015, 7, 6960-6966.	1.3	4
24	Supported bilayer membranes for reducing cell adhesion in microfluidic devices. Analytical Methods, 2021, 13, 1535-1540.	1.3	4
25	Suspensions of fluor-containing nanoparticles for quantifying βâ^-emitting radionuclides in non-hazardous media. Journal of Pharmaceutical Innovation, 2006, 1, 76-82.	1.1	3
26	A new resource to help instructors incorporate active learning into analytical chemistry courses. Analytical and Bioanalytical Chemistry, 2022, , 1.	1.9	3
27	Interspecies comparison of peptide substrate reporter metabolism using compartment-based modeling. Analytical and Bioanalytical Chemistry, 2017, 409, 1173-1183.	1.9	2
28	Effect of Loading Method on a Peptide Substrate Reporter in Intact Cells. Analytical Chemistry, 2018, 90, 11344-11350.	3.2	2
29	Microfluidic Chemical Cytometry for Enzyme Assays of Single Cells. Methods in Molecular Biology, 2015, 1346, 221-238.	0.4	1
30	Looking to the Future of Analytical Chemistry Education: A New Resource to Help Instructors. ACS Measurement Science Au, 2022, 2, 76-77.	1.9	1
31	Active Learning Exercises Involving Building and Design. ACS Symposium Series, 0, , 181-204.	0.5	1
32	Successfully navigating the early years of a faculty position. Analytical and Bioanalytical Chemistry, 2018, 410, 1855-1861.	1.9	0
33	New Software Application and Case Study That Simplify Teaching Complex Chemical Solubility and Equilibria. Journal of Chemical Education, 0, , .	1.1	О