
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1544969/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Musculoskeletal regeneration: A zebrafish perspective. Biochimie, 2022, 196, 171-181.	1.3	9
2	Blood vessel occlusion by Cryptococcus neoformans is a mechanism for haemorrhagic dissemination of infection. PLoS Pathogens, 2022, 18, e1010389.	2.1	13
3	Hedgehog signaling. Current Topics in Developmental Biology, 2022, , 1-58.	1.0	41
4	Neutrophils use selective autophagy receptor Sqstm1/p62 to target <i>Staphylococcus aureus</i> for degradation <i>in vivo</i> in zebrafish. Autophagy, 2021, 17, 1448-1457.	4.3	21
5	Fibrodysplasia ossificans progressiva: current concepts from bench to bedside. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	17
6	Development of the electric organ in embryos and larvae of the knifefish, Brachyhypopomus gauderio. Developmental Biology, 2020, 466, 99-108.	0.9	3
7	Editorial overview: Cilia in development and disease. Current Opinion in Genetics and Development, 2019, 56, iii-iv.	1.5	0
8	Open questions: how to get developmental biology into shape?. BMC Biology, 2019, 17, 17.	1.7	11
9	G protein–coupled receptors control the sensitivity of cells to the morphogen Sonic Hedgehog. Science Signaling, 2018, 11, .	1.6	78
10	The ciliopathy protein TALPID3/KIAA0586 acts upstream of Rab8 activation in zebrafish photoreceptor outer segment formation and maintenance. Scientific Reports, 2018, 8, 2211.	1.6	15
11	From <i>Drosophila</i> segmentation to human cancer therapy. Development (Cambridge), 2018, 145, .	1.2	21
12	Spatiotemporal Coordination of FGF and Shh Signaling Underlies the Specification of Myoblasts in the Zebrafish Embryo. Developmental Cell, 2018, 46, 735-750.e4.	3.1	26
13	Transgenic Zebrafish Reporter Lines as Alternative <i>In Vivo</i> Organ Toxicity Models. Toxicological Sciences, 2017, 156, kfw250.	1.4	18
14	MoD Special Issue celebrating 100 years since "On Growth and Form―by D'Arcy Wentworth Thompson. Mechanisms of Development, 2017, 145, 1.	1.7	4
15	Engrailed controls epaxial-hypaxial muscle innervation and the establishment of vertebrate three-dimensional mobility. Developmental Biology, 2017, 430, 90-104.	0.9	7
16	A Zebrafish Model for a Human Myopathy Associated with Mutation of the Unconventional Myosin MYO18B. Genetics, 2017, 205, 725-735.	1.2	25
17	Fin clipping and genotyping embryonic zebrafish at 3 days post-fertilization. BioTechniques, 2017, 62, .	0.8	5
18	Guidelines for morpholino use in zebrafish. PLoS Genetics, 2017, 13, e1007000.	1.5	255

#	Article	IF	CITATIONS
19	Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis. PLoS ONE, 2016, 11, e0166020.	1.1	31
20	Identification of benzopyrone as a common structural feature in compounds with anti-inflammatory activity in a zebrafish phenotypic screen. DMM Disease Models and Mechanisms, 2016, 9, 621-32.	1.2	28
21	Drosophila Segment Polarity Mutants and the Rediscovery of the Hedgehog Pathway Genes. Current Topics in Developmental Biology, 2016, 116, 477-488.	1.0	16
22	An essential role for Grk2 in Hedgehog signalling downstream of Smoothened. EMBO Reports, 2016, 17, 739-752.	2.0	44
23	The transcription factor SOX6 contributes to the developmental origins of obesity by promoting adipogenesis. Development (Cambridge), 2016, 143, 950-61.	1.2	41
24	Hedgehog signalling. Development (Cambridge), 2016, 143, 367-372.	1.2	195
25	Deep sequencing of small RNA facilitates tissue and sex associated microRNA discovery in zebrafish. BMC Genomics, 2015, 16, 950.	1.2	25
26	Adaxial cell migration in the zebrafish embryo is an active cell autonomous property that requires the Prdm1a transcription factor. Differentiation, 2015, 89, 77-86.	1.0	6
27	The role of Sox6 in zebrafish muscle fiber type specification. Skeletal Muscle, 2015, 5, 2.	1.9	43
28	Inhibitors of neutrophil recruitment identified using transgenic zebrafish to screen a natural product library. DMM Disease Models and Mechanisms, 2014, 7, 163-9.	1.2	40
29	Divergence of zebrafish and mouse lymphatic cell fate specification pathways. Development (Cambridge), 2014, 141, 1228-1238.	1.2	132
30	Elephant shark genome provides unique insights into gnathostome evolution. Nature, 2014, 505, 174-179.	13.7	689
31	Serum and Glucocorticoid–Regulated Kinase 1 Regulates Neutrophil Clearance during Inflammation Resolution. Journal of Immunology, 2014, 192, 1796-1805.	0.4	29
32	On the origin of SCPP genes. Evolution & Development, 2014, 16, 125-126.	1.1	4
33	Drugging Hedgehog: signaling the pathway to translation. BMC Biology, 2013, 11, 37.	1.7	15
34	Control of muscle fibre-type diversity during embryonic development: The zebrafish paradigm. Mechanisms of Development, 2013, 130, 447-457.	1.7	80
35	Signalling change: signal transduction through the decades. Nature Reviews Molecular Cell Biology, 2013, 14, 393-398.	16.1	53
36	Positive and Negative Regulation of Gli Activity by Kif7 in the Zebrafish Embryo. PLoS Genetics, 2013, 9, e1003955.	1.5	46

3

#	Article	IF	CITATIONS
37	Tardbpl splicing rescues motor neuron and axonal development in a mutant tardbp zebrafish. Human Molecular Genetics, 2013, 22, 2376-2386.	1.4	32
38	<i>TigarB</i> causes mitochondrial dysfunction and neuronal loss in PINK1 deficiency. Annals of Neurology, 2013, 74, 837-847.	2.8	68
39	Targeted inactivation and identification of targets of the Gli2a transcription factor in the zebrafish. Biology Open, 2013, 2, 1203-1213.	0.6	22
40	A method for high-throughput PCR-based genotyping of larval zebrafish tail biopsies. BioTechniques, 2013, 55, 314-316.	0.8	61
41	Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling. ELife, 2013, 2, e01340.	2.8	140
42	Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures. DMM Disease Models and Mechanisms, 2012, 5, 773-84.	1.2	110
43	Hedgehog Signaling. Cold Spring Harbor Perspectives in Biology, 2012, 4, a011221-a011221.	2.3	20
44	Hedgehog signaling via a calcitonin receptor-like receptor can induce arterial differentiation independently of VEGF signaling in zebrafish. Blood, 2012, 120, 477-488.	0.6	41
45	Zebrafish genetics gets the Scube on Hedgehog secretion. Genes and Development, 2012, 26, 2468-2470.	2.7	3
46	Activation of hypoxia-inducible factor- \hat{l}_{\pm} (Hif- \hat{l}_{\pm}) delays inflammation resolution by reducing neutrophil apoptosis and reverse migration in a zebrafish inflammation model. Blood, 2011, 118, 712-722.	0.6	218
47	Mechanisms and functions of Hedgehog signalling across the metazoa. Nature Reviews Genetics, 2011, 12, 393-406.	7.7	530
48	The interaction of epithelial Ihha and mesenchymal Fgf10 in zebrafish esophageal and swimbladder development. Developmental Biology, 2011, 359, 262-276.	0.9	37
49	Analysis of Pax7 expressing myogenic cells in zebrafish muscle development, injury, and models of disease. Developmental Dynamics, 2011, 240, 2440-2451.	0.8	95
50	The Influence of the Zebrafish Genetic Background on Parkinson's Disease–Related Aspects. Zebrafish, 2011, 8, 103-108.	0.5	10
51	Targeted mutation of the <i>talpid3</i> gene in zebrafish reveals its conserved requirement for ciliogenesis and Hedgehog signalling across the vertebrates. Development (Cambridge), 2011, 138, 4969-4978.	1.2	57
52	Integration of Hedgehog and BMP signalling by the <i>engrailed2a</i> gene in the zebrafish myotome. Development (Cambridge), 2011, 138, 755-765.	1.2	63
53	Prdm1a and miR-499 act sequentially to restrict Sox6 activity to the fast-twitch muscle lineage in the zebrafish embryo. Development (Cambridge), 2011, 138, 4399-4404.	1.2	56
54	Zebrafish models of the immune response: taking it on the ChIn. BMC Biology, 2010, 8, 148.	1.7	3

#	Article	IF	CITATIONS
55	Gli2a protein localization reveals a role for Iguana/DZIP1 in primary ciliogenesis and a dependence of Hedgehog signal transduction on primary cilia in the zebrafish. BMC Biology, 2010, 8, 65.	1.7	48
56	Genetic Analysis of Fin Development in Zebrafish Identifies Furin and Hemicentin1 as Potential Novel Fraser Syndrome Disease Genes. PLoS Genetics, 2010, 6, e1000907.	1.5	103
57	Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19485-19490.	3.3	220
58	Microarray profiling reveals <i>CXCR4a</i> is downregulated by blood flow in vivo and mediates collateral formation in zebrafish embryos. Physiological Genomics, 2009, 38, 319-327.	1.0	37
59	Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio). Brain, 2009, 132, 1613-1623.	3.7	173
60	Hedgehog Signalling: Kif7 Is Not That Fishy After All. Current Biology, 2009, 19, R729-R731.	1.8	12
61	Expression screening and annotation of a zebrafish myoblast cDNA library. Gene Expression Patterns, 2009, 9, 73-82.	0.3	8
62	The extracellular matrix protein TGFBI promotes myofibril bundling and muscle fibre growth in the zebrafish embryo. Developmental Dynamics, 2009, 238, 56-65.	0.8	26
63	Expression of <i>patched, prdm1</i> and <i>engrailed</i> in the lamprey somite reveals conserved responses to Hedgehog signaling. Evolution & Development, 2009, 11, 27-40.	1.1	24
64	The power of the zebrafish for disease analysis. Human Molecular Genetics, 2009, 18, R107-R112.	1.4	106
65	Pivotal Advance: Pharmacological manipulation of inflammation resolution during spontaneously resolving tissue neutrophilia in the zebrafish. Journal of Leukocyte Biology, 2009, 87, 203-212.	1.5	115
66	Hedgehog signalling is required for cloacal development in the zebrafish embryo. International Journal of Developmental Biology, 2009, 53, 45-57.	0.3	31
67	Prdm1―and Sox6â€mediated transcriptional repression specifies muscle fibre type in the zebrafish embryo. EMBO Reports, 2008, 9, 683-689.	2.0	119
68	Zebrafish as a new animal model for movement disorders. Journal of Neurochemistry, 2008, 106, 1991-1997.	2.1	121
69	Hedgehog signalling. Current Biology, 2008, 18, R238-R241.	1.8	32
70	Modeling Cardiovascular Disease in the Zebrafish. Trends in Cardiovascular Medicine, 2008, 18, 150-155.	2.3	113
71	Collagen XV, a novel factor in zebrafish notochord differentiation and muscle development. Developmental Biology, 2008, 316, 21-35.	0.9	55
72	Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing requirements for Hedgehog and Prdm1 activity. Development (Cambridge), 2008, 135, 2115-2126.	1.2	131

PHILIP W INGHAM

#	Article	IF	CITATIONS
73	The Adventures of Sonic Hedgehog in Development and Repair. I. Hedgehog signaling in gastrointestinal development and disease. American Journal of Physiology - Renal Physiology, 2008, 294, G363-G367.	1.6	47
74	Small-Scale Marker-Based Screening for Mutations in Zebrafish Development. Methods in Molecular Biology, 2008, 461, 493-512.	0.4	2
75	A role for the Myoblast city homologues Dock1 and Dock5 and the adaptor proteins Crk and Crk-like in zebrafish myoblast fusion. Development (Cambridge), 2007, 134, 3145-3153.	1.2	118
76	Sdf1a patterns zebrafish melanophores and links the somite and melanophore pattern defects in choker mutants. Development (Cambridge), 2007, 134, 1011-1022.	1.2	59
77	Microcephalin coordinates mitosis in the syncytial <i>Drosophila</i> embryo. Journal of Cell Science, 2007, 120, 3578-3588.	1.2	39
78	Ischemia Is Not Required for Arteriogenesis in Zebrafish Embryos. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2135-2141.	1.1	62
79	MODELING INFLAMMATION IN THE ZEBRAFISH: HOW A FISH CAN HELP US UNDERSTAND LUNG DISEASE. Experimental Lung Research, 2007, 33, 549-554.	0.5	42
80	Micromanaging the response to Hedgehog. Nature Genetics, 2007, 39, 145-146.	9.4	2
81	p53-dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson's disease. Journal of Neurochemistry, 2007, 100, 070209222715077-???.	2.1	177
82	A transgenic zebrafish model of neutrophilic inflammation. Blood, 2006, 108, 3976-3978.	0.6	915
83	Orchestrating ontogenesis: variations on a theme by sonic hedgehog. Nature Reviews Genetics, 2006, 7, 841-850.	7.7	260
84	A homologue of the Drosophila kinesin-like protein Costal2 regulates Hedgehog signal transduction in the vertebrate embryo. Development (Cambridge), 2005, 132, 625-634.	1.2	78
85	Retinoic Acid Signaling Restricts the Cardiac Progenitor Pool. Science, 2005, 307, 247-249.	6.0	204
86	Hedgehog signalling and the specification of muscle cell identity in the Zebrafish embryo. Experimental Cell Research, 2005, 306, 336-342.	1.2	56
87	iguana encodes a novel zinc-finger protein with coiled-coil domains essential for Hedgehog signal transduction in the zebrafish embryo. Genes and Development, 2004, 18, 1565-1576.	2.7	99
88	Drosophila melanogaster as a model host for Staphylococcus aureus infection. Microbiology (United) Tj ETQq0	0 0 rgBT /(Overlock 10 Th
89	The B-cell maturation factor Blimp-1 specifies vertebrate slow-twitch muscle fiber identity in response to Hedgehog signaling. Nature Genetics, 2004, 36, 88-93.	9.4	167

90Functional domains and sub-cellular distribution of the Hedgehog transducing protein Smoothened
in Drosophila. Mechanisms of Development, 2004, 121, 507-518.1.785

#	Article	IF	CITATIONS
91	Inactivation of dispatched 1 by the chameleon mutation disrupts Hedgehog signalling in the zebrafish embryo. Developmental Biology, 2004, 269, 381-392.	0.9	74
92	Multiple Muscle Cell Identities Induced by Distinct Levels and Timing of Hedgehog Activity in the Zebrafish Embryo. Current Biology, 2003, 13, 1169-1181.	1.8	252
93	Regulation of Stem Cell Maintenance and Transit Amplifying Cell Proliferation by TGF-Î ² Signaling in Drosophila Spermatogenesis. Current Biology, 2003, 13, 2065-2072.	1.8	210
94	The transformation of the model organism: a decade of developmental genetics. Nature Genetics, 2003, 33, 285-293.	9.4	108
95	1 Developmental roles and clinical significance of Hedgehog signaling. Current Topics in Developmental Biology, 2003, 53, 1-114.	1.0	799
96	Hedgehog Signaling in the Drosophila Eye and Head: An Analysis of the Effects of Differentpatched Trans-heterozygotes. Genetics, 2003, 165, 1915-1928.	1.2	17
97	Hedgehogs tryst with the cell cycle. Journal of Cell Science, 2002, 115, 4393-4397.	1.2	61
98	Notch and Wingless Modulate the Response of Cells to Hedgehog Signalling in the Drosophila Wing. Developmental Biology, 2002, 248, 93-106.	0.9	32
99	Cloning of zebrafish T-box genes tbx15 and tbx18 and their expression during embryonic development. Mechanisms of Development, 2002, 114, 137-141.	1.7	51
100	Hedgehog signaling in animal development: paradigms and principles. Genes and Development, 2001, 15, 3059-3087.	2.7	2,630
101	Plasticity in Zebrafish hox Expression in the Hindbrain and Cranial Neural Crest. Developmental Biology, 2001, 231, 201-216.	0.9	107
102	Mutations in the sterol-sensing domain of Patched suggest a role for vesicular trafficking in Smoothened regulation. Current Biology, 2001, 11, 608-613.	1.8	181
103	Hedgehog signaling pathway is essential for pancreas specification in the zebrafish embryo. Current Biology, 2001, 11, 1358-1363.	1.8	96
104	Hedgehog Signaling: A Tale of Two Lipids. Science, 2001, 294, 1879-1881.	6.0	99
105	The u-boot mutation identifies a Hedgehog-regulated myogenic switch for fiber-type diversification in the zebrafish embryo. Genes and Development, 2001, 15, 1563-1576.	2.7	143
106	Hedgehog signalling: How cholesterol modulates the signal. Current Biology, 2000, 10, R180-R183.	1.8	29
107	Patched represses the Hedgehog signalling pathway by promoting modification of the Smoothened protein. Current Biology, 2000, 10, 1315-1318.	1.8	136
108	Two Distinct Cell Populations in the Floor Plate of the Zebrafish Are Induced by Different Pathways. Developmental Biology, 2000, 219, 350-363.	0.9	99

#	Article	IF	CITATIONS
109	Developmental regulation of Tbx5 in zebrafish embryogenesis. Mechanisms of Development, 2000, 90, 299-304.	1.7	91
110	Insights into early vasculogenesis revealed by expression of the ETS-domain transcription factor Fli-1 in wild-type and mutant zebrafish embryos. Mechanisms of Development, 2000, 90, 237-252.	1.7	240
111	Small-Scale Marker-Based Screening for Mutations in Zebrafish Development. , 1999, 97, 441-460.		3
112	Characterisation of a SecondpatchedGene in the ZebrafishDanio rerioand the Differential Response ofpatchedGenes to Hedgehog Signalling. Developmental Biology, 1999, 208, 14-29.	0.9	93
113	Regulation of Left–Right Asymmetries in the Zebrafish by Shh and BMP4. Developmental Biology, 1999, 210, 277-287.	0.9	107
114	Control of Muscle Cell-Type Specification in the Zebrafish Embryo by Hedgehog Signalling. Developmental Biology, 1999, 216, 469-480.	0.9	146
115	Switching on the notochord. Genes and Development, 1999, 13, 1643-1646.	2.7	20
116	Transducing Hedgehog: the story so far. EMBO Journal, 1998, 17, 3505-3511.	3.5	402
117	Boning up on Hedgehog's movements. Nature, 1998, 394, 16-17.	13.7	13
118	The patched gene in development and cancer. Current Opinion in Genetics and Development, 1998, 8, 88-94.	1.5	105
119	The generation and interpretation of positional information within the vertebrate myotome. Mechanisms of Development, 1998, 73, 3-21.	1.7	79
120	Notochord induction of zebrafish slow muscle mediated by Sonic hedgehog. Genes and Development, 1997, 11, 2163-2175.	2.7	342
121	Zebrafish genetics and its implications for understanding vertebrate development. Human Molecular Genetics, 1997, 6, 1755-1760.	1.4	46
122	Axial (HNF3β) and retinoic acid receptors are regulators of the zebrafish sonic hedgehog promoter. EMBO Journal, 1997, 16, 3955-3964.	3.5	97
123	<i>oneâ€eyed pinhead</i> is required for development of the ventral midline of the zebrafish (<i>Danio) Tj ETQq1</i>	1.0.7843 2.8	14 ₀ gBT /0
124	Has the quest for a Wnt receptor finally frizzled out?. Trends in Genetics, 1996, 12, 382-384.	2.9	16
125	Smoothening the path for hedgehogs. Trends in Cell Biology, 1996, 6, 451-453.	3.6	9
126	Three Wnt genes expressed in a wide variety of tissues during development of the zebrafish, Danio rerio : developmental and evolutionary perspectives. Development Genes and Evolution, 1996, 206, 3-13.	0.4	36

#	Article	IF	CITATIONS
127	Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish. Nature, 1996, 382, 452-455.	13.7	323
128	smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature, 1996, 382, 547-551.	13.7	444
129	Transcriptional activation of hedgehog target genes in Drosophila is mediated directly by the cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins Genes and Development, 1996, 10, 2003-2013.	2.7	345
130	Quantitative effects of hedgehog and decapentaplegic activity on the patterning of the Drosophila wing. Current Biology, 1995, 5, 432-440.	1.8	145
131	Secretion of the amino-terminal fragment of the Hedgehog protein is necessary and sufficient for hedgehog signalling in Drosophila. Current Biology, 1995, 5, 643-650.	1.8	74
132	Patterning goes Sonic. Nature, 1995, 375, 279-280.	13.7	15
133	Signalling by hedgehog family proteins in Drosophila and vertebrate development. Current Opinion in Genetics and Development, 1995, 5, 492-498.	1.5	107
134	A simple and efficient procedure for non-isotopic in situ hybridization to sectioned material. Trends in Genetics, 1994, 10, 75-76.	2.9	135
135	Catch of the decade. Nature, 1994, 369, 19-20.	13.7	16
136	Dorsal developments. Nature, 1994, 372, 500-501.	13.7	10
137	Pattern Formation: Hedgehog points the way. Current Biology, 1994, 4, 347-350.	1.8	60
138	Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell, 1994, 79, 805-815.	13.5	541
139	The <i>hedgehog</i> gene family in <i>Drosophila</i> and vertebrate development. Development (Cambridge), 1994, 1994, 43-51.	1.2	73
140	Localized hedgehog activity controls spatial limits of wingless transcription in the Drosophila embryo. Nature, 1993, 366, 560-562.	13.7	170
141	Contrasting distributions of patched and hedgehog proteins in the Drosophila embryo. Mechanisms of Development, 1993, 42, 89-96.	1.7	113
142	A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell, 1993, 75, 1431-1444.	13.5	1,042
143	Axial, a zebrafish gene expressed along the developing body axis, shows altered expression in cyclops mutant embryos Genes and Development, 1993, 7, 1436-1446.	2.7	274
144	Boundaries and fields in early embryos. Cell, 1992, 68, 221-235.	13.5	247

#	Article	IF	CITATIONS
145	Cloning and characterization of a novel Drosophila Wnt gene, Dwnt-5, a putative downstream target of the homeobox gene Distal-less. Developmental Biology, 1992, 154, 73-83.	0.9	44
146	Mice and flies head to head. Nature, 1992, 358, 627-628.	13.7	46
147	Segment polarity genes and cell patterning within the Drosophila body segment. Current Opinion in Genetics and Development, 1991, 1, 261-267.	1.5	81
148	Role of the Drosophila patched gene in positional signalling. Nature, 1991, 353, 184-187.	13.7	411
149	Cell Patterning and Segment Polarity Genes in Drosophila. (pattern formation/Drosophila/Cell) Tj ETQq1 1 0.784 1990, 32, 563-574.	314 rgBT , 0.6	Overlock 10 11
150	The X, Y, Z of head development. Nature, 1990, 346, 412-413.	13.7	10
151	A protein with several possible membrane-spanning domains encoded by the Drosophila segment polarity gene patched. Nature, 1989, 341, 508-513.	13.7	343
152	Autocatalytic ftz activation and metameric instability induced by ectopic ftz expression. Cell, 1989, 57, 223-232.	13.5	91
153	Drosophila development. Current Opinion in Cell Biology, 1989, 1, 1127-1131.	2.6	1
154	Regulation of segment polarity genes in the Drosophila blastoderm by fushi tarazu and even skipped. Nature, 1988, 331, 73-75.	13.7	202
155	The molecular genetics of embryonic pattern formation in Drosophila. Nature, 1988, 335, 25-34.	13.7	1,094
156	Region-specific alleles of the Drosophila segmentation gene hairy Genes and Development, 1988, 2, 1037-1046.	2.7	91
157	Regulatory interactions between the segmentation genes fushi tarazu, hairy, and engrailed in the Drosophila blastoderm. Cell, 1986, 44, 949-957.	13.5	253
158	Isolation, structure, and expression of even-skipped: A second pair-rule gene of Drosophila containing a homeo box. Cell, 1986, 47, 721-734.	13.5	403
159	Pattern formation: Form and diffusion. Nature, 1986, 324, 510-511.	13.7	2
160	The correct activation of Antennapedia and bithorax complex genes requires the fushi tarazu gene. Nature, 1986, 324, 592-597.	13.7	225
161	Drosophila development: Abdominal gene organization. Nature, 1985, 313, 98-99.	13.7	2
162	Drosophila genetics: Patterns of differentiation. Nature, 1985, 317, 202-203.	13.7	0

#	Article	IF	CITATIONS
163	Expression of engrailed in the parasegment of Drosophila. Nature, 1985, 317, 634-636.	13.7	80
164	Transcription pattern of the Drosophila segmentation gene hairy. Nature, 1985, 318, 439-445.	13.7	328
165	The regulation of the bithorax complex. Trends in Genetics, 1985, 1, 112-116.	2.9	11
166	A gene that regulates the bithorax complex differentially in larval and adult cells of Drosophila. Cell, 1984, 37, 815-823.	13.5	202
167	Differential expression of bithorax complex genes in the absence of the extra sex combs and trithorax genes. Nature, 1983, 306, 591-593.	13.7	112
168	Trithorax: A new homoeotic mutation of Drosophila melanogaster causing transformations of abdominal and thoracic imaginal segments. Molecular Genetics and Genomics, 1980, 179, 607-614.	2.4	134