
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1544654/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fermi-Ulam Accelerator Model under Scaling Analysis. Physical Review Letters, 2004, 93, 014101.	2.9	95
2	A hybrid Fermi–Ulam-bouncer model. Journal of Physics A, 2005, 38, 823-839.	1.6	61
3	Suppressing Fermi Acceleration in a Driven Elliptical Billiard. Physical Review Letters, 2010, 104, 224101.	2.9	51
4	Fermi acceleration on the annular billiard. Physical Review E, 2006, 73, 066229.	0.8	48
5	Corrugated Waveguide under Scaling Investigation. Physical Review Letters, 2007, 98, 114102.	2.9	48
6	On the dynamical properties of a Fermi accelerator model. Physica A: Statistical Mechanics and Its Applications, 2004, 331, 435-447.	1.2	47
7	Scaling investigation of Fermi acceleration on a dissipative bouncer model. Physical Review E, 2008, 78, 056205.	0.8	42
8	Fermi acceleration on the annular billiard: a simplified version. Journal of Physics A, 2006, 39, 3561-3573.	1.6	41
9	Describing Fermi acceleration with a scaling approach: The Bouncer model revisited. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 1155-1160.	1.2	37
10	Fermi acceleration and scaling properties of a time dependent oval billiard. Chaos, 2009, 19, 033142.	1.0	37
11	The presence and lack of Fermi acceleration in nonintegrable billiards. Journal of Physics A: Mathematical and Theoretical, 2007, 40, F887-F893.	0.7	35
12	Shrimp-shape domains in a dissipative kicked rotator. Chaos, 2011, 21, 043122.	1.0	35
13	Stickiness in a bouncer model: A slowing mechanism for Fermi acceleration. Physical Review E, 2012, 86, 036203.	0.8	35
14	Scaling properties of the Fermi-Ulam accelerator model. Brazilian Journal of Physics, 2006, 36, 700-707.	0.7	33
15	A crisis in the dissipative Fermi accelerator model. Journal of Physics A, 2005, 38, L425-L430.	1.6	32
16	Suppressing Fermi acceleration in a two-dimensional non-integrable time-dependent oval-shaped billiard with inelastic collisions. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 1009-1020.	1.2	29
17	Fermi acceleration and its suppression in a time-dependent Lorentz gas. Physica D: Nonlinear Phenomena, 2011, 240, 389-396.	1.3	28
18	Chaotic properties of a time-modulated barrier. Physical Review E, 2004, 70, 016214.	0.8	27

#	Article	IF	CITATIONS
19	Breaking down the Fermi acceleration with inelastic collisions. Journal of Physics A: Mathematical and Theoretical, 2007, 40, F1077-F1083.	0.7	26
20	A family of crisis in a dissipative Fermi accelerator model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 364, 475-479.	0.9	25
21	Parameter space for a dissipative Fermi–Ulam model. New Journal of Physics, 2011, 13, 123012.	1.2	25
22	Critical exponents for a transition from integrability to non-integrability via localization of invariant tori in the Hamiltonian system. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 302001.	0.7	24
23	Dynamical properties of a particle in a classical time-dependent potential well. Physica A: Statistical Mechanics and Its Applications, 2003, 323, 181-196.	1.2	23
24	Finding critical exponents for two-dimensional Hamiltonian maps. Physical Review E, 2010, 81, 046212.	0.8	23
25	The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1610-1614.	0.9	23
26	Dynamical properties of a dissipative hybrid Fermi-Ulam-bouncer model. Chaos, 2007, 17, 013119.	1.0	22
27	Escape of particles in a time-dependent potential well. Physical Review E, 2011, 83, 066211.	0.8	22
28	Escape and transport for an open bouncer: Stretched exponential decays. Physica D: Nonlinear Phenomena, 2012, 241, 403-408.	1.3	22
29	Scaling properties for a classical particle in a time-dependent potential well. Chaos, 2005, 15, 033701.	1.0	21
30	Effect of a frictional force on the Fermi–Ulam model. Journal of Physics A, 2006, 39, 11399-11415.	1.6	21
31	On the dynamical properties of an elliptical–oval billiard with static boundary. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 1092-1102.	1.7	19
32	An investigation of the parameter space for a family of dissipative mappings. Chaos, 2019, 29, 053114.	1.0	18
33	Dynamical properties of a particle in a time-dependent double-well potential. Journal of Physics A, 2004, 37, 8949-8968.	1.6	16
34	Convergence towards asymptotic state in 1-D mappings: A scaling investigation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1246-1250.	0.9	16
35	Suppressing Fermi acceleration in two-dimensional driven billiards. Physical Review E, 2010, 82, 016202.	0.8	15
36	Crises in a dissipative bouncing ball model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2830-2838.	0.9	15

#	Article	IF	CITATIONS
37	RELAXATION AND TRANSIENTS IN A TIME-DEPENDENT LOGISTIC MAP. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2002, 12, 1667-1674.	0.7	14
38	Dissipative area-preserving one-dimensional Fermi accelerator model. Physical Review E, 2006, 73, 066223.	0.8	14
39	Route to chaos and some properties in the boundary crisis of a generalized logistic mapping. Physica A: Statistical Mechanics and Its Applications, 2017, 486, 674-680.	1.2	14
40	Boundary crisis and suppression of Fermi acceleration in a dissipative two-dimensional non-integrable time-dependent billiard. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 3016-3020.	0.9	13
41	Recurrence of particles in static and time varying oval billiards. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 1669-1674.	0.9	13
42	Non-uniform drag force on the Fermi accelerator model. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 5366-5374.	1.2	12
43	Relaxation to Fixed Points in the Logistic and Cubic Maps: Analytical and Numerical Investigation. Entropy, 2013, 15, 4310-4318.	1.1	12
44	A bouncing ball model with two nonlinearities: a prototype for Fermi acceleration. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 015104.	0.7	11
45	Competition between suppression and production of Fermi acceleration. Physical Review E, 2010, 81, 036216.	0.8	11
46	Characterization of multiple reflections and phase space properties for a periodically corrugated waveguide. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 265101.	0.7	11
47	A peculiar Maxwell's Demon observed in a time-dependent stadium-like billiard. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 4756-4762.	1.2	11
48	Scaling invariance for the escape of particles from a periodically corrugated waveguide. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 421-425.	0.9	11
49	Statistical properties of a dissipative kicked system: Critical exponents and scaling invariance. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 723-728.	0.9	11
50	Thermodynamics of a bouncer model: A simplified one-dimensional gas. Communications in Nonlinear Science and Numerical Simulation, 2015, 20, 159-173.	1.7	11
51	Transport and dynamical properties for a bouncing ball model with regular and stochastic perturbations. Communications in Nonlinear Science and Numerical Simulation, 2015, 20, 871-881.	1.7	11
52	Explaining the high number of infected people by dengue in Rio de Janeiro in 2008 using a susceptible-infective-recovered model. Physical Review E, 2011, 83, 037101.	0.8	10
53	Boundary crisis and transient in a dissipative relativistic standard map. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3365-3369.	0.9	10
54	Escape through a time-dependent hole in the doubling map. Physical Review E, 2014, 89, 052913.	0.8	10

#	Article	IF	CITATIONS
55	Transients in a time-dependent logistic map. Physica A: Statistical Mechanics and Its Applications, 2001, 295, 280-284.	1.2	9
56	Scaling properties of the regular dynamics for a dissipative bouncing ball model. Physica A: Statistical Mechanics and Its Applications, 2007, 386, 73-78.	1.2	9
57	In-flight and collisional dissipation as a mechanism to suppress Fermi acceleration in a breathing Lorentz gas. Chaos, 2012, 22, 026123.	1.0	9
58	Scaling invariance of the diffusion coefficient in a family of two-dimensional Hamiltonian mappings. Physical Review E, 2013, 87, 062904.	0.8	9
59	Squared sine logistic map. Physica A: Statistical Mechanics and Its Applications, 2016, 463, 37-44.	1.2	9
60	A simplified Fermi Accelerator Model under quadratic frictional force. Brazilian Journal of Physics, 2008, 38, 58-61.	0.7	9
61	The Feigenbaum's delta for a high dissipative bouncing ball model. Brazilian Journal of Physics, 2008, 38, 62-64.	0.7	9
62	Scaling Properties of a Hybrid Fermi-Ulam-Bouncer Model. Mathematical Problems in Engineering, 2009, 2009, 1-13.	0.6	8
63	Separation of particles in time-dependent focusing billiards. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 5408-5415.	1.2	8
64	Some dynamical properties of a classical dissipative bouncing ball model with two nonlinearities. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 1762-1769.	1.2	8
65	A theoretical characterization of scaling properties in a bouncing ball system. Physica A: Statistical Mechanics and Its Applications, 2014, 404, 279-284.	1.2	8
66	Global ballistic acceleration in a bouncing-ball model. Physical Review E, 2015, 92, 012905.	0.8	8
67	On the statistical and transport properties of a non-dissipative Fermi-Ulam model. Chaos, 2015, 25, 103107.	1.0	8
68	Addendum to: "Convergence towards asymptotic state in 1-D mappings: A scaling investigation―[Phys. Lett. A 379 (2015) 1246]. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1796-1798.	0.9	8
69	A dynamical phase transition for a family of Hamiltonian mappings: A phenomenological investigation to obtain the critical exponents. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1808-1815.	0.9	8
70	Defining universality classes for three different local bifurcations. Communications in Nonlinear Science and Numerical Simulation, 2016, 39, 520-528.	1.7	8
71	Decay of energy and suppression of Fermi acceleration in a dissipative driven stadium-like billiard. Chaos, 2012, 22, 026122.	1.0	7
72	Leaking of trajectories from the phase space of discontinuous dynamics. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 405101.	0.7	7

#	Article	IF	CITATIONS
73	A symmetry break in energy distribution and a biased random walk behavior causing unlimited diffusion in a two dimensional mapping. Physica A: Statistical Mechanics and Its Applications, 2015, 436, 909-915.	1.2	7
74	Circular, elliptic and oval billiards in a gravitational field. Communications in Nonlinear Science and Numerical Simulation, 2015, 22, 731-746.	1.7	7
75	Dynamics of a charged particle in a dissipative Fermi–Ulam model. Communications in Nonlinear Science and Numerical Simulation, 2015, 20, 546-558.	1.7	7
76	Thermodynamics of a time-dependent and dissipative oval billiard: A heat transfer and billiard approach. Physical Review E, 2016, 94, 062211.	0.8	7
77	Statistical properties for an open oval billiard: An investigation of the escaping basins. Chaos, Solitons and Fractals, 2018, 106, 355-362.	2.5	7
78	Scaling invariance in a social network with limited attention and innovation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 3376-3380.	0.9	7
79	Investigation of pollen release by poricidal anthers using mathematical billiards. Physical Review E, 2021, 104, 034409.	0.8	7
80	Complexity of Capture Phenomena in the Conservative and the Dissipative Restricted Three-Body Problems. Astronomical Journal, 1999, 117, 1634-1642.	1.9	6
81	Finding invariant tori in the problem of a periodically corrugated waveguide. Brazilian Journal of Physics, 2008, 38, 54-57.	0.7	6
82	Phase Transition in Dynamical Systems: Defining Classes of Universality for Two-Dimensional Hamiltonian Mappings via Critical Exponents. Mathematical Problems in Engineering, 2009, 2009, 1-22.	0.6	6
83	THE EFFECT OF WEAK DISSIPATION IN TWO-DIMENSIONAL MAPPING. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250248.	0.7	6
84	Dynamical properties for the problem of a particle in an electric field of wave packet: Low velocity and relativistic approach. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 3630-3637.	0.9	6
85	Escape beam statistics and dynamical properties for a periodically corrugated waveguide. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 842-850.	1.7	6
86	Separation of particles leading either to decay or unlimited growth of energy in a driven stadium-like billiard. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 365101.	0.7	6
87	Dynamics of classical particles in oval or elliptic billiards with a dispersing mechanism. Chaos, 2015, 25, 033109.	1.0	6
88	Dynamical properties of a particle in a wave packet: Scaling invariance and boundary crisis. Chaos, Solitons and Fractals, 2011, 44, 883-890.	2.5	5
89	A family of stadium-like billiards with parabolic boundaries under scaling analysis. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 175102.	0.7	5
90	Dissipation and its consequences in the scaling exponents for a family of two-dimensional mappings. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 165101.	0.7	5

#	Article	IF	CITATIONS
91	Dynamical properties for a mixed Fermi accelerator model. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 4231-4241.	1.2	5
92	A family of dissipative two-dimensional mappings: Chaotic, regular and steady state dynamics investigation. Physica A: Statistical Mechanics and Its Applications, 2014, 395, 458-465.	1.2	5
93	Statistical investigation and thermal properties for a 1-D impact system with dissipation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1830-1838.	0.9	5
94	Influence of stability islands in the recurrence of particles in a static oval billiard with holes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3634-3639.	0.9	5
95	Ensemble separation and stickiness influence in a driven stadium-like billiard: A Lyapunov exponents analysis. Communications in Nonlinear Science and Numerical Simulation, 2018, 65, 248-259.	1.7	5
96	Locating invariant tori for a family of two-dimensional Hamiltonian mappings. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 3727-3731.	1.2	4
97	Scaling dynamics for a particle in a time-dependent potential well. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 3607-3615.	1.2	4
98	Dynamical properties of a dissipative discontinuous map: A scaling investigation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 3216-3222.	0.9	4
99	Statistical properties for a dissipative model of relativistic particles in a wave packet: A parameter space investigation. Applied Mathematics and Computation, 2014, 238, 387-392.	1.4	4
100	Statistical and dynamical properties of a dissipative kicked rotator. Physica A: Statistical Mechanics and Its Applications, 2014, 413, 498-514.	1.2	4
101	Transition from normal to ballistic diffusion in a one-dimensional impact system. Physical Review E, 2018, 97, 032205.	0.8	4
102	Investigation of stickiness influence in the anomalous transport and diffusion for a non-dissipative Fermi–Ulam model. Communications in Nonlinear Science and Numerical Simulation, 2018, 55, 225-236.	1.7	4
103	An Investigation of Chaotic Diffusion in a Family of Hamiltonian Mappings Whose Angles Diverge in the Limit of Vanishingly Action. Journal of Statistical Physics, 2018, 170, 69-78.	0.5	4
104	Scaling and self-similarity for the dynamics of a particle confined to an asymmetric time-dependent potential well. Physical Review E, 2019, 99, 012202.	0.8	4
105	Application of the diffusion equation to prove scaling invariance on the transition from limited to unlimited diffusion. Europhysics Letters, 2020, 131, 10004.	0.7	4
106	Consequences of Quadratic Frictional Force on the One Dimensional Bouncing Ball Model. AIP Conference Proceedings, 2007, , .	0.3	3
107	Time-Dependent Billiards. Mathematical Problems in Engineering, 2009, 2009, 1-4.	0.6	3
108	Fermi acceleration with memory-dependent excitation. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 4927-4935.	1.2	3

#	Article	IF	CITATIONS
109	Effects of a parametric perturbation in the Hassell mapping. Chaos, Solitons and Fractals, 2018, 113, 238-243.	2.5	3
110	On the dynamics of two-dimensional dissipative discontinuous maps. Chaos, Solitons and Fractals, 2020, 131, 109520.	2.5	3
111	Scaling Laws in Dynamical Systems. Nonlinear Physical Science, 2021, , .	0.2	3
112	A short review of phase transition in a chaotic system. European Physical Journal: Special Topics, 2022, 231, 167-177.	1.2	3
113	Introduction to Focus Issue: Statistical mechanics and billiard-type dynamical systems. Chaos, 2012, 22, 026101.	1.0	2
114	One-dimensional Fermi accelerator model with moving wall described by a nonlinear van der Pol oscillator. Physical Review E, 2013, 87, 012904.	0.8	2
115	Periodic compression of an adiabatic gas: Intermittency-enhanced Fermi acceleration. Europhysics Letters, 2013, 103, 40003.	0.7	2
116	Time-dependent properties in two-dimensional and Hamiltonian mappings. European Physical Journal: Special Topics, 2014, 223, 2953-2958.	1.2	2
117	Dynamical and statistical properties of a rotating oval billiard. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 1926-1934.	1.7	2
118	Phase space properties and chaotic transport for a particle moving in a time dependent step potential well. Applied Mathematics and Computation, 2014, 236, 215-228.	1.4	2
119	Analytical description of critical dynamics for two-dimensional dissipative nonlinear maps. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1959-1963.	0.9	2
120	An investigation of the convergence to the stationary state in the Hassell mapping. Physica A: Statistical Mechanics and Its Applications, 2017, 466, 537-543.	1.2	2
121	Diffusion entropy analysis in billiard systems. Physical Review E, 2019, 100, 042207.	0.8	2
122	Chaotic diffusion for particles moving in a time dependent potential well. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126737.	0.9	2
123	Characterization of a continuous phase transition in a chaotic system. Europhysics Letters, 2020, 131, 20002.	0.7	2
124	Diffusion phenomena in a mixed phase space. Chaos, 2020, 30, 013108.	1.0	2
125	Dynamical aspects of a bouncing ball in a nonhomogeneous field. Physical Review E, 2021, 103, 062205.	0.8	2
126	Fisher information of the Kuramoto model: A geometric reading on synchronization. Physica D: Nonlinear Phenomena, 2021, 423, 132926.	1.3	2

#	Article	IF	CITATIONS
127	A scaling investigation for a Van der Pol circuit: normal form applied to a Hopf bifurcation. International Journal of Nonlinear Dynamics and Control, 2018, 1, 154.	0.1	2
128	Publisher's Note: Fermi-Ulam Accelerator Model under Scaling Analysis[Phys. Rev. Lett.93, 014101 (2004)]. Physical Review Letters, 2004, 93, .	2.9	1
129	Can Drag Force Suppress Fermi Acceleration in a Bouncer Model?. Mathematical Problems in Engineering, 2009, 2009, 1-13.	0.6	1
130	CRITICAL EXPONENTS AND SCALING PROPERTIES FOR THE CHAOTIC DYNAMICS OF A PARTICLE IN A TIME-DEPENDENT POTENTIAL BARRIER. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250250.	0.7	1
131	Scaling investigation for the dynamics of charged particles in an electric field accelerator. Chaos, 2012, 22, 043148.	1.0	1
132	Dynamical properties for an ensemble of classical particles moving in a driven potential well with different time perturbation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1814-1821.	0.9	1
133	A rescaling of the phase space for Hamiltonian map: Applications on the Kepler map and mappings with diverging angles in the limit of vanishing action. Applied Mathematics and Computation, 2013, 221, 32-39.	1.4	1
134	Two-dimensional nonlinear map characterized by tunable Lévy flights. Physical Review E, 2014, 90, 042138.	0.8	1
135	Transport of chaotic trajectories from regions distant from or near to structures of regular motion of the Fermi-Ulam model. Physical Review E, 2016, 94, 042208.	0.8	1
136	Survival probability for chaotic particles in a set of area preserving maps. European Physical Journal: Special Topics, 2016, 225, 2751-2761.	1.2	1
137	A scaling investigation for a Van der Pol circuit: normal form applied to a Hopf bifurcation. International Journal of Nonlinear Dynamics and Control, 2018, 1, 154.	0.1	1
138	Explaining a changeover from normal to super diffusion in time-dependent billiards. Europhysics Letters, 2018, 121, 60003.	0.7	1
139	Statistical description of multiple collisions in the Fermi-Ulam model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 3080-3087.	0.9	1
140	Dynamical thermalization in time-dependent billiards. Chaos, 2019, 29, 103122.	1.0	1
141	Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map. Brazilian Journal of Physics, 2019, 49, 923-927.	0.7	1
142	Characteristic Times for the Fermi–Ulam Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2130004.	0.7	1
143	Leaking of orbits from the phase space of the dissipative discontinuous standard mapping. Physical Review E, 2021, 103, 012211.	0.8	1
144	Boundary crises and supertrack orbits in the Gauss map. European Physical Journal: Special Topics, 0, , 1.	1.2	1

#	Article	IF	CITATIONS
145	Information geometry theory of bifurcations? A covariant formulation. Chaos, 2022, 32, 023119.	1.0	1
146	Publisher's Note: Fermi acceleration on the annular billiard [Phys. Rev. E 73, 066229 (2006)]. Physical Review E, 2006, 74, .	0.8	0
147	Publisher's Note: Suppressing Fermi acceleration in two-dimensional driven billiards [Phys. Rev. E82, 016202 (2010)]. Physical Review E, 2010, 82, .	0.8	0
148	Saddle points and rare collisions under scaling approach in a Fermi accelerator with two nonlinear terms. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 1586-1592.	1.2	0
149	Scaling properties and universality in a ratchet system. European Physical Journal: Special Topics, 2014, 223, 2969-2978.	1.2	0
150	Scaling properties for a family of discontinuous mappings. Physica A: Statistical Mechanics and Its Applications, 2015, 436, 943-951.	1.2	0
151	A Monte Carlo approach for the bouncer model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 3636-3640.	0.9	0
152	Evolution to the equilibrium in a dissipative and time dependent billiard. Physica A: Statistical Mechanics and Its Applications, 2017, 465, 66-74.	1.2	0
153	Dynamics towards the steady state applied for the Smith-Slatkin mapping. Chaos, Solitons and Fractals, 2018, 108, 119-122.	2.5	0
154	Hidden High Period Accelerator Modes in a Bouncer Model. Springer Proceedings in Physics, 2016, , 179-191.	0.1	0
155	An Investigation of the Chaotic Transient for a Boundary Crisis in the Fermi-Ulam Model. Advances in Dynamics, Patterns, Cognition, 2019, , 89-108.	0.2	0
156	Aplicação de parâmetro de resistência à fadiga para ligantes asfálticos baseado na mecânica da fratura elástico-linear. Transportes, 2020, 28, 99-116.	0.3	0
157	Tangent Method and Some Dynamical Properties of an Oval-Like Billiard. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2022, 32, .	0.7	0