
Michael K Skinner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1544591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide CpG density and DNA methylation analysis method (MeDIP, RRBS, and WGBS) comparisons. Epigenetics, 2022, 17, 518-530.	2.7	52
2	Developmental alterations in DNA methylation during gametogenesis from primordial germ cells to sperm. IScience, 2022, 25, 103786.	4.1	17
3	Role of epigenetic transgenerational inheritance in generational toxicology. Environmental Epigenetics, 2022, 8, dvac001.	1.8	35
4	Environmental Epigenetics 2022 Update. Environmental Epigenetics, 2022, 8, dvac008.	1.8	1
5	Preterm birth buccal cell epigenetic biomarkers to facilitate preventative medicine. Scientific Reports, 2022, 12, 3361.	3.3	8
6	Environmental induced transgenerational inheritance impacts systems epigenetics in disease etiology. Scientific Reports, 2022, 12, 5452.	3.3	19
7	Epigenome-wide association study for glyphosate induced transgenerational sperm DNA methylation and histone retention epigenetic biomarkers for disease. Epigenetics, 2021, 16, 1150-1167.	2.7	29
8	Transgenerational disease specific epigenetic sperm biomarkers after ancestral exposure to dioxin. Environmental Research, 2021, 192, 110279.	7.5	12
9	Environmental impacts on sperm and oocyte epigenetics affect embryo cell epigenetics and transcription to promote the epigenetic inheritance of pathology and phenotypic variation. Reproduction, Fertility and Development, 2021, 33, 102.	0.4	2
10	Sperm DNA methylation epimutation biomarker for paternal offspring autism susceptibility. Clinical Epigenetics, 2021, 13, 6.	4.1	50
11	Integration of sperm ncRNA-directed DNA methylation and DNA methylation-directed histone retention in epigenetic transgenerational inheritance. Epigenetics and Chromatin, 2021, 14, 6.	3.9	46
12	<i>Environmental Epigenetics</i> update. Environmental Epigenetics, 2021, 7, dvab001.	1.8	0
13	Differential DNA methylation in somatic and sperm cells of hatchery vs wild (natural-origin) steelhead trout populations. Environmental Epigenetics, 2021, 7, dvab002.	1.8	15
14	Ancestral plastics exposure induces transgenerational disease-specific sperm epigenome-wide association biomarkers. Environmental Epigenetics, 2021, 7, dvaa023.	1.8	46
15	Epigenetic transgenerational inheritance, gametogenesis and germline developmentâ€. Biology of Reproduction, 2021, 105, 570-592.	2.7	32
16	Epigenetic inheritance of DNA methylation changes in fish living in hydrogen sulfide–rich springs. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	36
17	Genome-Wide Mapping of DNA Methylation 5mC by Methylated DNA Immunoprecipitation (MeDIP)-Sequencing. Methods in Molecular Biology, 2021, 2198, 301-310.	0.9	16
18	Role of environmentally induced epigenetic transgenerational inheritance in evolutionary biology: Unified Evolution Theory. Environmental Epigenetics, 2021, 7, dvab012.	1.8	40

#	Article	IF	CITATIONS
19	Predicting environmentally responsive transgenerational differential DNA methylated regions (epimutations) in the genome using a hybrid deep-machine learning approach. BMC Bioinformatics, 2021, 22, 575.	2.6	2
20	Epigenome association study for DNA methylation biomarkers in buccal and monocyte cells for female rheumatoid arthritis. Scientific Reports, 2021, 11, 23789.	3.3	7
21	Epigenetic transgenerational inheritance of parent-of-origin allelic transmission of outcross pathology and sperm epimutations. Developmental Biology, 2020, 458, 106-119.	2.0	32
22	Epigenome-wide association study for transgenerational disease sperm epimutation biomarkers following ancestral exposure to jet fuel hydrocarbons. Reproductive Toxicology, 2020, 98, 61-74.	2.9	5
23	Between-Generation Phenotypic and Epigenetic Stability in a Clonal Snail. Genome Biology and Evolution, 2020, 12, 1604-1615.	2.5	3
24	Environmentally Induced Epigenetic Transgenerational Inheritance and the Weismann Barrier: The Dawn of Neo-Lamarckian Theory. Journal of Developmental Biology, 2020, 8, 28.	1.7	18
25	Epigenome-wide association study for pesticide (Permethrin and DEET) induced DNA methylation epimutation biomarkers for specific transgenerational disease. Environmental Health, 2020, 19, 109.	4.0	13
26	Epigenetic Transgenerational Inheritance of Obesity Susceptibility. Trends in Endocrinology and Metabolism, 2020, 31, 478-494.	7.1	80
27	Developmental origins of transgenerational sperm histone retention following ancestral exposures. Developmental Biology, 2020, 465, 31-45.	2.0	20
28	Environmental epigenetics and epigenetic inheritance in domestic farm animals. Animal Reproduction Science, 2020, 220, 106316.	1.5	36
29	Epigenome-wide association study (EWAS) for potential transgenerational disease epigenetic biomarkers in sperm following ancestral exposure to the pesticide methoxychlor. Environmental Epigenetics, 2020, 6, dvaa020.	1.8	10
30	Epigenome-wide association study for atrazine induced transgenerational DNA methylation and histone retention sperm epigenetic biomarkers for disease. PLoS ONE, 2020, 15, e0239380.	2.5	13
31	Epigenetic transgenerational inheritance of testis pathology and Sertoli cell epimutations: generational origins of male infertility. Environmental Epigenetics, 2019, 5, dvz013.	1.8	33
32	Sperm epimutation biomarkers of obesity and pathologies following DDT induced epigenetic transgenerational inheritance of disease. Environmental Epigenetics, 2019, 5, dvz008.	1.8	46
33	Definition of epigenetic transgenerational inheritance and biological impacts. , 2019, , 13-24.		7
34	Transgenerational sperm DNA methylation epimutation developmental origins following ancestral vinclozolin exposure. Epigenetics, 2019, 14, 721-739.	2.7	54
35	Environmental Epigenetics Update and Boards. Environmental Epigenetics, 2019, 5, dvz006.	1.8	0
36	RWâ€⊋018—Research Workshop: The Effect of Nutrition on Epigenetic Status, Growth, and Health. Journal of Parenteral and Enteral Nutrition, 2019, 43, 627-637.	2.6	6

#	Article	IF	CITATIONS
37	Assessment of Glyphosate Induced Epigenetic Transgenerational Inheritance of Pathologies and Sperm Epimutations: Generational Toxicology. Scientific Reports, 2019, 9, 6372.	3.3	143
38	Environmental Toxicant Induced Epigenetic Transgenerational Inheritance of Prostate Pathology and Stromal-Epithelial Cell Epigenome and Transcriptome Alterations: Ancestral Origins of Prostate Disease. Scientific Reports, 2019, 9, 2209.	3.3	31
39	2019 environment, epigenetics and reproduction. Environmental Epigenetics, 2019, 5, dvz025.	1.8	Ο
40	Sperm DNA Methylation Epimutation Biomarkers for Male Infertility and FSH Therapeutic Responsiveness. Scientific Reports, 2019, 9, 16786.	3.3	53
41	Adipocyte epigenetic alterations and potential therapeutic targets in transgenerationally inherited lean and obese phenotypes following ancestral exposures. Adipocyte, 2019, 8, 362-378.	2.8	14
42	Regional epigenetic variation in asexual snail populations among urban and rural lakes. Environmental Epigenetics, 2019, 5, dvz020.	1.8	16
43	Developmental origins of transgenerational sperm DNA methylation epimutations following ancestral DDT exposure. Developmental Biology, 2019, 445, 280-293.	2.0	43
44	Environmental Epigenetics update. Environmental Epigenetics, 2018, 4, dvy009.	1.8	0
45	Epigenetic Transgenerational Inheritance of Altered Sperm Histone Retention Sites. Scientific Reports, 2018, 8, 5308.	3.3	81
46	Prenatal influences on temperament development: The role of environmental epigenetics. Development and Psychopathology, 2018, 30, 1269-1303.	2.3	110
47	Vinclozolin induced epigenetic transgenerational inheritance of pathologies and sperm epimutation biomarkers for specific diseases. PLoS ONE, 2018, 13, e0202662.	2.5	63
48	Preconception cold–induced epigenetic inheritance. Nature Medicine, 2018, 24, 1308-1309.	30.7	3
49	Environmental toxicant induced epigenetic transgenerational inheritance of ovarian pathology and granulosa cell epigenome and transcriptome alterations: ancestral origins of polycystic ovarian syndrome and primary ovarian insufficiency. Epigenetics, 2018, 13, 875-895.	2.7	51
50	Epigenetic Transgenerational Inheritance Across Species. , 2018, , 442-445.		1
51	Environmentally induced epigenetic transgenerational inheritance of disease. Environmental Epigenetics, 2018, 4, dvy016.	1.8	293
52	Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics and Chromatin, 2018, 11, 8.	3.9	148
53	Alterations in sperm DNA methylation, non-coding RNA expression, and histone retention mediate vinclozolin-induced epigenetic transgenerational inheritance of disease. Environmental Epigenetics, 2018, 4, dvy010.	1.8	127
54	Machine learning for epigenetics and future medical applications. Epigenetics, 2017, 12, 505-514.	2.7	91

#	Article	IF	CITATIONS
55	Generational comparisons (F1 versus F3) of vinclozolin induced epigenetic transgenerational inheritance of sperm differential DNA methylation regions (epimutations) using MeDIP-Seq. Environmental Epigenetics, 2017, 3, .	1.8	47
56	Epigenetics and adaptive phenotypic variation between habitats in an asexual snail. Scientific Reports, 2017, 7, 14139.	3.3	58
57	Environment, epigenetics and reproduction. Environmental Epigenetics, 2017, 3, dvx018.	1.8	0
58	Differential DNA Methylation Regions in Adult Human Sperm following Adolescent Chemotherapy: Potential for Epigenetic Inheritance. PLoS ONE, 2017, 12, e0170085.	2.5	44
59	Atrazine induced epigenetic transgenerational inheritance of disease, lean phenotype and sperm epimutation pathology biomarkers. PLoS ONE, 2017, 12, e0184306.	2.5	110
60	Epigenetic variation between urban and rural populations of Darwin's finches. BMC Evolutionary Biology, 2017, 17, 183.	3.2	53
61	Mercury-induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in zebrafish. PLoS ONE, 2017, 12, e0176155.	2.5	104
62	Genomic Clustering of differential DNA methylated regions (epimutations) associated with the epigenetic transgenerational inheritance of disease and phenotypic variation. BMC Genomics, 2016, 17, 418.	2.8	42
63	Epigenetic programming alterations in alligators from environmentally contaminated lakes. General and Comparative Endocrinology, 2016, 238, 4-12.	1.8	24
64	Differential DNA methylation analysis optimally requires purified cell populations. Fertility and Sterility, 2016, 106, 551.	1.0	9
65	Developmental origins of epigenetic transgenerational inheritance. Environmental Epigenetics, 2016, 2, dvw002.	1.8	131
66	Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs. Environmental Epigenetics, 2016, 2, dvw001.	1.8	90
67	Epigenetic transgenerational inheritance. Nature Reviews Endocrinology, 2016, 12, 68-70.	9.6	148
68	Tertiary Epimutations – A Novel Aspect of Epigenetic Transgenerational Inheritance Promoting Genome Instability. PLoS ONE, 2016, 11, e0168038.	2.5	35
69	Cenome-Wide Locations of Potential Epimutations Associated with Environmentally Induced Epigenetic Transgenerational Inheritance of Disease Using a Sequential Machine Learning Prediction Approach. PLoS ONE, 2015, 10, e0142274.	2.5	13
70	Environmentally Induced Epigenetic Transgenerational Inheritance of Reproductive Disease1. Biology of Reproduction, 2015, 93, 145.	2.7	75
71	Distinct actions of ancestral vinclozolin and juvenile stress on neural gene expression in the male rat. Frontiers in Genetics, 2015, 6, 56.	2.3	17
72	Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution: A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution. Genome Biology and Evolution, 2015, 7, 1296-1302.	2.5	232

#	Article	IF	CITATIONS
73	Environmentally induced epigenetic transgenerational inheritance of altered SRY genomic binding during gonadal sex determination. Environmental Epigenetics, 2015, 1, dvv004.	1.8	12
74	Environmental Epigenetics. Environmental Epigenetics, 2015, 1, dvv002.	1.8	6
75	Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations. Epigenetics, 2015, 10, 762-771.	2.7	118
76	Environmentally induced epigenetic transgenerational inheritance of disease susceptibility. Translational Research, 2015, 165, 12-17.	5.0	115
77	Identification of Genomic Features in Environmentally Induced Epigenetic Transgenerational Inherited Sperm Epimutations. PLoS ONE, 2014, 9, e100194.	2.5	50
78	Pesticide Methoxychlor Promotes the Epigenetic Transgenerational Inheritance of Adult-Onset Disease through the Female Germline. PLoS ONE, 2014, 9, e102091.	2.5	198
79	Imbalanced Class Learning in Epigenetics. Journal of Computational Biology, 2014, 21, 492-507.	1.6	12
80	Environment, Epigenetics and Reproduction. Molecular and Cellular Endocrinology, 2014, 398, 1-3.	3.2	15
81	Epigenetics and transgenerational inheritance in domesticated farm animals. Journal of Animal Science and Biotechnology, 2014, 5, 48.	5.3	55
82	Environmental epigenetics and phytoestrogen/phytochemical exposures. Journal of Steroid Biochemistry and Molecular Biology, 2014, 139, 270-276.	2.5	52
83	Structural and functional conservation of fungal MatA and human SRY sex-determining proteins. Nature Communications, 2014, 5, 5434.	12.8	12
84	Nature, nurture and epigenetics. Molecular and Cellular Endocrinology, 2014, 398, 42-52.	3.2	70
85	A New Kind of Inheritance. Scientific American, 2014, 311, 44-51.	1.0	25
86	Epigenetics and the Evolution of Darwin's Finches. Genome Biology and Evolution, 2014, 6, 1972-1989.	2.5	107
87	Gene bionetworks involved in the epigenetic transgenerational inheritance of altered mate preference: environmental epigenetics and evolutionary biology. BMC Genomics, 2014, 15, 377.	2.8	31
88	Role of CpG deserts in the epigenetic transgenerational inheritance of differential DNA methylation regions. BMC Genomics, 2014, 15, 692.	2.8	78
89	DDT, epigenetic harm, and transgenerational environmental justice. Environmental Health, 2014, 13, 62.	4.0	37
90	Environmental stress and epigenetic transgenerational inheritance. BMC Medicine, 2014, 12, 153.	5.5	181

#	Article	IF	CITATIONS
91	Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Molecular and Cellular Endocrinology, 2014, 398, 4-12.	3.2	198
92	Roles of Gremlin 1 and Gremlin 2 in regulating ovarian primordial to primary follicle transition. Reproduction, 2014, 147, 865-874.	2.6	37
93	Cytokine (IL16) and tyrphostin actions on ovarian primordial follicle development. Reproduction, 2014, 148, 321-331.	2.6	8
94	Environmentally induced epigenetic transgenerational inheritance of male infertility. Current Opinion in Genetics and Development, 2014, 26, 79-88.	3.3	67
95	Hydrocarbons (jet fuel JP-8) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. Reproductive Toxicology, 2013, 36, 104-116.	2.9	195
96	Generalized Query-Based Active Learning to Identify Differentially Methylated Regions in DNA. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 632-644.	3.0	10
97	Environmental Epigenetics and Epigenetic Transgenerational Inheritance. Epigenetics and Human Health, 2013, , 245-256.	0.2	2
98	Environmentally Induced Epigenetic Transgenerational Inheritance of Altered Sertoli Cell Transcriptome and Epigenome: Molecular Etiology of Male Infertility. PLoS ONE, 2013, 8, e59922.	2.5	119
99	Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Medicine, 2013, 11, 228.	5.5	334
100	Plastics Derived Endocrine Disruptors (BPA, DEHP and DBP) Induce Epigenetic Transgenerational Inheritance of Obesity, Reproductive Disease and Sperm Epimutations. PLoS ONE, 2013, 8, e55387.	2.5	711
101	Environmentally Induced Transgenerational Epigenetic Reprogramming of Primordial Germ Cells and the Subsequent Germ Line. PLoS ONE, 2013, 8, e66318.	2.5	156
102	Epigenetic transgenerational inheritance of altered stress responses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9143-9148.	7.1	285
103	Dioxin (TCDD) Induces Epigenetic Transgenerational Inheritance of Adult Onset Disease and Sperm Epimutations. PLoS ONE, 2012, 7, e46249.	2.5	225
104	Transgenerational Actions of Environmental Compounds on Reproductive Disease and Identification of Epigenetic Biomarkers of Ancestral Exposures. PLoS ONE, 2012, 7, e31901.	2.5	380
105	Pesticide and insect repellent mixture (permethrin and DEET) induces epigenetic transgenerational inheritance of disease and sperm epimutations. Reproductive Toxicology, 2012, 34, 708-719.	2.9	177
106	Epigenetic transgenerational inheritance of somatic transcriptomes and epigenetic control regions. Genome Biology, 2012, 13, R91.	9.6	105
107	Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers. Reproductive Toxicology, 2012, 34, 694-707.	2.9	228
108	Environmentally induced epigenetic transgenerational inheritance of phenotype and disease. Molecular and Cellular Endocrinology, 2012, 354, 3-8.	3.2	194

#	Article	IF	CITATIONS
109	Environmentally Induced Epigenetic Transgenerational Inheritance of Ovarian Disease. PLoS ONE, 2012, 7, e36129.	2.5	205
110	Global Genome Analysis of the Downstream Binding Targets of Testis Determining Factor SRY and SOX9. PLoS ONE, 2012, 7, e43380.	2.5	49
111	Environmental epigenomics and disease susceptibility. EMBO Reports, 2011, 12, 620-622.	4.5	65
112	Epigenetic transgenerational actions of endocrine disruptors. Reproductive Toxicology, 2011, 31, 337-343.	2.9	232
113	Role of epigenetics in developmental biology and transgenerational inheritance. Birth Defects Research Part C: Embryo Today Reviews, 2011, 93, 51-55.	3.6	172
114	Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics, 2011, 6, 838-842.	2.7	302
115	Basic Helix-Loop-Helix Transcription Factor TCF21 Is a Downstream Target of the Male Sex Determining Gene SRY. PLoS ONE, 2011, 6, e19935.	2.5	68
116	Inhibitory Actions of Anti-Müllerian Hormone (AMH) on Ovarian Primordial Follicle Assembly. PLoS ONE, 2011, 6, e20087.	2.5	92
117	Alterations in the developing testis transcriptome following embryonic vinclozolin exposure. Reproductive Toxicology, 2010, 30, 353-364.	2.9	36
118	Fathers' nutritional legacy. Nature, 2010, 467, 922-923.	27.8	47
119	Induction of Ovarian Primordial Follicle Assembly by Connective Tissue Growth Factor CTGF. PLoS ONE, 2010, 5, e12979.	2.5	44
120	Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature. Differentiation, 2010, 80, 1-8.	1.9	82
121	Epigenetic transgenerational actions of environmental factors in disease etiology. Trends in Endocrinology and Metabolism, 2010, 21, 214-222.	7.1	608
122	Gene Bionetwork Analysis of Ovarian Primordial Follicle Development. PLoS ONE, 2010, 5, e11637.	2.5	49
123	Epigenetic Transgenerational Actions of Vinclozolin on Promoter Regions of the Sperm Epigenome. PLoS ONE, 2010, 5, e13100.	2.5	362
124	Environmental signals and transgenerational epigenetics. Epigenomics, 2009, 1, 111-117.	2.1	95
125	Epigenetic Transgenerational Effects of Endocrine Disruptors on Male Reproduction. Seminars in Reproductive Medicine, 2009, 27, 403-408.	1.1	60
126	Progesterone regulation of primordial follicle assembly in bovine fetal ovaries. Molecular and Cellular Endocrinology, 2009, 313, 9-16.	3.2	62

#	Article	IF	CITATIONS
127	Transgenerational effects of the endocrine disruptor vinclozolin on the prostate transcriptome and adult onset disease. Prostate, 2008, 68, 517-529.	2.3	114
128	Regulation of granulosa and theca cell transcriptomes during ovarian antral follicle development. Molecular Reproduction and Development, 2008, 75, 1457-1472.	2.0	89
129	Phylogenetic and expression analysis of the basic helix-loop-helix transcription factor gene family: genomic approach to cellular differentiation. Differentiation, 2008, 76, 1006-1042.	1.9	51
130	What is an epigenetic transgenerational phenotype?. Reproductive Toxicology, 2008, 25, 2-6.	2.9	416
131	Comparative anti-androgenic actions of vinclozolin and flutamide on transgenerational adult onset disease and spermatogenesis. Reproductive Toxicology, 2008, 26, 100-106.	2.9	76
132	Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reproductive BioMedicine Online, 2008, 16, 23-25.	2.4	153
133	Transforming growth factor beta (TGFβ1, TGFβ2 and TGFβ3) null-mutant phenotypes in embryonic gonadal development. Molecular and Cellular Endocrinology, 2008, 294, 70-80.	3.2	74
134	Transgenerational epigenetic programming of the embryonic testis transcriptome. Genomics, 2008, 91, 30-40.	2.9	154
135	Age-Dependent Loss of Sperm Production in Mice via Impaired Lysophosphatidic Acid Signaling1. Biology of Reproduction, 2008, 79, 328-336.	2.7	68
136	Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease. Reproduction, 2008, 135, 713-721.	2.6	164
137	Transgenerational Epigenetic Programming of the Brain Transcriptome and Anxiety Behavior. PLoS ONE, 2008, 3, e3745.	2.5	257
138	Endocrine Disruptors and Epigenetic Transgenerational Disease Etiology. Pediatric Research, 2007, 61, 48R-50R.	2.3	49
139	Transgenerational epigenetic imprints on mate preference. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5942-5946.	7.1	379
140	Environmental epigenomics and disease susceptibility. Nature Reviews Genetics, 2007, 8, 253-262.	16.3	2,180
141	Epigenetic transgenerational toxicology and germ cell disease. Journal of Developmental and Physical Disabilities, 2007, 30, 393-397.	3.6	19
142	Epigenetic Transgenerational Actions of Vinclozolin on the Development of Disease and Cancer. Critical Reviews in Oncogenesis, 2007, 13, 75-82.	0.4	45
143	Transgenerational Effect of the Endocrine Disruptor Vinclozolin on Male Spermatogenesis. Journal of Andrology, 2006, 27, 868-879.	2.0	268
144	Role of the basic helix-loop-helix protein ITF2 in the hormonal regulation of Sertoli cell differentiation. Molecular Reproduction and Development, 2006, 73, 491-500.	2.0	11

#	Article	IF	CITATIONS
145	Endocrine Disruptor Vinclozolin Induced Epigenetic Transgenerational Adult-Onset Disease. Endocrinology, 2006, 147, 5515-5523.	2.8	508
146	Seminiferous Cord Formation and Germ-Cell Programming: Epigenetic Transgenerational Actions of Endocrine Disruptors. Annals of the New York Academy of Sciences, 2005, 1061, 18-32.	3.8	72
147	LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature, 2005, 435, 104-108.	27.8	482
148	Keratinocyte Growth Factor Acts as a Mesenchymal Factor That Promotes Ovarian Primordial to Primary Follicle Transition. Biology of Reproduction, 2005, 73, 967-973.	2.7	93
149	Alterations in the Ovarian Transcriptome During Primordial Follicle Assembly and Development1. Biology of Reproduction, 2005, 72, 241-255.	2.7	100
150	Inhibition of phosphatidylinositol 3-kinase sensitizes ovarian cancer cells to carboplatin and allows adjunct chemotherapy treatment. Molecular Cancer Therapeutics, 2005, 4, 1764-1771.	4.1	55
151	Role of the Basic Helix-Loop-Helix Transcription Factor, Scleraxis, in the Regulation of Sertoli Cell Function and Differentiation. Molecular Endocrinology, 2005, 19, 2164-2174.	3.7	31
152	The Helix-Loop-Helix Inhibitor of Differentiation (ID) Proteins Induce Post-Mitotic Terminally Differentiated Sertoli Cells to Re-Enter the Cell Cycle and Proliferate. Biology of Reproduction, 2005, 72, 1205-1217.	2.7	82
153	Developmentally distinct in vivo effects of FSH on proliferation and apoptosis during testis maturation. Journal of Endocrinology, 2005, 186, 429-446.	2.6	86
154	Profiling Gene Expression During the Differentiation and Development of the Murine Embryonic Gonad1. Biology of Reproduction, 2005, 72, 492-501.	2.7	190
155	Epigenetic Transgenerational Actions of Endocrine Disruptors and Male Fertility. Science, 2005, 308, 1466-1469.	12.6	2,322
156	Regulation of primordial follicle assembly and development. Human Reproduction Update, 2005, 11, 461-471.	10.8	404
157	Effect of the anti-androgenic endocrine disruptor vinclozolin on embryonic testis cord formation and postnatal testis development and function. Reproductive Toxicology, 2004, 18, 765-774.	2.9	134
158	Identification of a novel Sertoli cell gene product SERT that influences follicle stimulating hormone actions. Gene, 2004, 324, 79-88.	2.2	4
159	Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition. Molecular and Cellular Endocrinology, 2004, 214, 19-25.	3.2	125
160	Effect of Transient Embryonic In Vivo Exposure to the Endocrine Disruptor Methoxychlor on Embryonic and Postnatal Testis Development. Journal of Andrology, 2003, 24, 736-745.	2.0	61
161	Chemotactic Role of Neurotropin 3 in the Embryonic Testis That Facilitates Male Sex Determination1. Biology of Reproduction, 2003, 68, 2033-2037.	2.7	65
162	Bone Morphogenetic Protein-4 Acts as an Ovarian Follicle Survival Factor and Promotes Primordial Follicle Development. Biology of Reproduction, 2003, 69, 1265-1272.	2.7	236

#	Article	IF	CITATIONS
163	Growth and Differentiation Factor-9 Stimulates Progression of Early Primary but Not Primordial Rat Ovarian Follicle Development1. Biology of Reproduction, 2002, 67, 1018-1024.	2.7	127
164	Testis Developmental Phenotypes in Neurotropin Receptor trkA and trkC Null Mutations: Role in Formation of Seminiferous Cords and Germ Cell Survival1. Biology of Reproduction, 2002, 66, 1838-1845.	2.7	43
165	Embryonic Testis Cord Formation and Mesonephric Cell Migration Requires the Phosphotidylinositol 3-Kinase Signaling Pathway1. Biology of Reproduction, 2002, 67, 1927-1935.	2.7	38
166	Inhibition of Platelet-Derived Growth Factor Actions in the Embryonic Testis Influences Normal Cord Development and Morphology1. Biology of Reproduction, 2002, 66, 745-753.	2.7	39
167	Role of transforming growth factor β in ovarian surface epithelium biology and ovarian cancer. Reproductive BioMedicine Online, 2002, 5, 254-258.	2.4	40
168	Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Molecular and Cellular Endocrinology, 2002, 188, 65-73.	3.2	215
169	Insulin but not insulin-like growth factor-1 promotes the primordial to primary follicle transition. Molecular and Cellular Endocrinology, 2002, 192, 37-43.	3.2	142
170	Cell-cell interactions in primordial follicle assembly and development. Frontiers in Bioscience - Landmark, 2002, 7, d1990.	3.0	78
171	An in vivo mouse reporter gene (human secreted alkaline phosphatase) model to monitor ovarian tumor growth and response to therapeutics. Cancer Chemotherapy and Pharmacology, 2002, 49, 93-100.	2.3	32
172	Characterization of a rat in vitro ovarian culture system to study the ovarian toxicant 4-vinylcyclohexene diepoxide. Toxicology and Applied Pharmacology, 2002, 184, 107-15.	2.8	33
173	Expression, Action, and Regulation of Transforming Growth Factor Alpha and Epidermal Growth Factor Receptor During Embryonic and Perinatal Rat Testis Development. Journal of Andrology, 2001, 22, 1019-1029.	2.0	12
174	Expression and actions of both the follicle stimulating hormone receptor and the luteinizing hormone receptor in normal ovarian surface epithelium and ovarian cancer. Molecular and Cellular Endocrinology, 2001, 172, 213-222.	3.2	123
175	Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Molecular and Cellular Endocrinology, 2001, 175, 123-130.	3.2	238
176	Stromal-epithelial interactions in the progression of ovarian cancer: influence and source of tumor stromal cells. Molecular and Cellular Endocrinology, 2001, 175, 29-39.	3.2	57
177	Expression and action of transforming growth factor beta (TGFβ1, TGFβ2, TGFβ3) in normal bovine ovarian surface epithelium and implications for human ovarian cancer. Molecular and Cellular Endocrinology, 2001, 182, 145-155.	3.2	26
178	Actions of the endocrine disruptor methoxychlor and its estrogenic metabolite on in vitro embryonic rat seminiferous cord formation and perinatal testis growth. Reproductive Toxicology, 2001, 15, 317-326.	2.9	39
179	Hormonal Regulation and Differential Actions of the Helix-Loop-Helix Transcriptional Inhibitors of Differentiation (Id1, Id2, Id3, and Id4) in Sertoli Cells*. Endocrinology, 2001, 142, 1727-1736.	2.8	60
180	Role of the Transcriptional Coactivator CBP/p300 in Linking Basic Helix-Loop-Helix and CREB Responses for Follicle-Stimulating Hormone-Mediated Activation of the Transferrin Promoter in Sertoli Cells. Biology of Reproduction, 2001, 65, 568-574.	2.7	18

#	Article	IF	CITATIONS
181	Hormonal Regulation and Differential Actions of the Helix-Loop-Helix Transcriptional Inhibitors of Differentiation (Id1, Id2, Id3, and Id4) in Sertoli Cells. Endocrinology, 2001, 142, 1727-1736.	2.8	19
182	Kit ligand actions on ovarian stromal cells: Effects on theca cell recruitment and steroid production. Molecular Reproduction and Development, 2000, 55, 55-64.	2.0	114
183	Expression and Action of Hepatocyte Growth Factor in Human and Bovine Normal Ovarian Surface Epithelium and Ovarian Cancer1. Biology of Reproduction, 2000, 62, 491-500.	2.7	39
184	Expression and Action of Kit Ligand/Stem Cell Factor in Normal Human and Bovine Ovarian Surface Epithelium and Ovarian Cancer1. Biology of Reproduction, 2000, 62, 1600-1609.	2.7	82
185	Role of Transforming Growth Factor-α and the Epidermal Growth Factor Receptor in Embryonic Rat Testis Development1. Biology of Reproduction, 2000, 62, 477-490.	2.7	68
186	Expression and Action of Neurotropin-3 and Nerve Growth Factor in Embryonic and Early Postnatal Rat Testis Development. Biology of Reproduction, 2000, 63, 1617-1628.	2.7	75
187	Expression and Action of Transforming Growth Factor Alpha in Normal Ovarian Surface Epithelium and Ovarian Cancer1. Biology of Reproduction, 2000, 63, 789-796.	2.7	36
188	Expression and action of keratinocyte growth factor (KGF) in normal ovarian surface epithelium and ovarian cancer. Molecular and Cellular Endocrinology, 2000, 167, 77-87.	3.2	41
189	Role of Neurotropins in Rat Embryonic Testis Morphogenesis (Cord Formation)1. Biology of Reproduction, 2000, 62, 132-142.	2.7	70
190	Autocrine Interactions of Keratinocyte Growth Factor, Hepatocyte Growth Factor, and Kit-Ligand in the Regulation of Normal Ovarian Surface Epithelial Cells. Endocrinology, 2000, 141, 2532-2539.	2.8	10
191	Kit-Ligand/Stem Cell Factor Induces Primordial Follicle Development and Initiates Folliculogenesis1. Endocrinology, 1999, 140, 4262-4271.	2.8	357
192	Expression and Action of Transforming Growth Factor Beta (TGFβ1, TGFβ2, and TGFβ3) during Embryonic Rat Testis Development1. Biology of Reproduction, 1999, 60, 1304-1313.	2.7	89
193	Expression of the Basic Helix-Loop-Helix Protein REBα in Rat Testicular Sertoli Cells1. Biology of Reproduction, 1999, 60, 1244-1250.	2.7	15
194	Basic Helix-Loop-Helix Proteins Can Act at the E-Box within the Serum Response Element of the c-fosPromoter to Influence Hormone-Induced Promoter Activation in Sertoli Cells. Molecular Endocrinology, 1999, 13, 774-786.	3.7	74
195	Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature, 1999, 398, 723-728.	27.8	458
196	The basic helix-loop-helix E2A gene product E47, not E12, is present in differentiating Sertoli cells. Molecular Reproduction and Development, 1999, 52, 1-8.	2.0	12
197	Action of Retinoids on Embryonic and Early Postnatal Testis Development. Endocrinology, 1999, 140, 2343-2352.	2.8	61
198	E-Box and Cyclic Adenosine Monophosphate Response Elements Are Both Required for Follicle-Stimulating Hormone-Induced Transferrin Promoter Activation in Sertoli Cells. Endocrinology, 1999, 140, 1262-1271.	2.8	13

#	Article	IF	CITATIONS
199	Action of Retinoids on Embryonic and Early Postnatal Testis Development. Endocrinology, 1999, 140, 2343-2352.	2.8	15
200	Kit-Ligand/Stem Cell Factor Induces Primordial Follicle Development and Initiates Folliculogenesis. Endocrinology, 1999, 140, 4262-4271.	2.8	101
201	Comparative sequence analysis of the mouse and human transferrin promoters: Hormonal regulation of the transferrin promoter in Sertoli cells. Molecular Reproduction and Development, 1998, 50, 273-283.	2.0	11
202	Testicular degeneration in Bclw-deficient mice. Nature Genetics, 1998, 18, 251-256.	21.4	244
203	Developmental and Hormonal Regulation of Hepatocyte Growth Factor Expression and Action in the Bovine Ovarian Follicle1. Biology of Reproduction, 1998, 59, 553-560.	2.7	48
204	Developmental and Hormonal Regulation of Transforming Growth Factor-β1 (TGFβ1), -2, and -3 Gene Expression in Isolated Prostatic Epithelial and Stromal Cells: Epidermal Growth Factor and TGFβ Interactions1. Endocrinology, 1998, 139, 1378-1388.	2.8	67
205	Changing Patterns of Gene Expression Identify Multiple Steps During Regression of Rat Prostate in Vivo. Endocrinology, 1998, 139, 2935-2943.	2.8	8
206	Developmental and Hormonal Regulation of Transforming Growth Factor-α and Epidermal Growth Factor Receptor Gene Expression in Isolated Prostatic Epithelial and Stromal Cells*. Endocrinology, 1998, 139, 1369-1377.	2.8	32
207	Thecal Cell-Granulosa Cell Interactions Involve a Positive Feedback Loop among Keratinocyte Growth Factor, Hepatocyte Growth Factor, and Kit Ligand during Ovarian Follicular Development ¹ . Endocrinology, 1998, 139, 2240-2245.	2.8	103
208	Developmental and Hormonal Regulation of Keratinocyte Growth Factor Expression and Action in the Ovarian Follicle. Endocrinology, 1998, 139, 228-235.	2.8	36
209	Developmental and Hormonal Regulation of Transforming Growth Factor-Â and Epidermal Growth Factor Receptor Gene Expression in Isolated Prostatic Epithelial and Stromal Cells. Endocrinology, 1998, 139, 1369-1377.	2.8	11
210	Changing Patterns of Gene Expression Identify Multiple Steps During Regression of Rat Prostate in Vivo. Endocrinology, 1998, 139, 2935-2943.	2.8	1
211	Direct Actions of Kit-Ligand on Theca Cell Growth and Differentiation During Follicle Development*. Endocrinology, 1997, 138, 3819-3827.	2.8	117
212	Direct Actions of Kit-Ligand on Theca Cell Growth and Differentiation During Follicle Development. Endocrinology, 1997, 138, 3819-3827.	2.8	28
213	Transcriptional Regulation of Sertoli Cell Differentiation by Follicle-Stimulating Hormone at the Level of the C-Fos and Transferrin Promoters1. Biology of Reproduction, 1996, 54, 692-699.	2.7	22
214	Transcriptional regulation of Sertoli cell differentiation (transferrin promoter activation) during testicular development. Genesis, 1995, 16, 114-118.	2.1	6
215	Characterization of Bovine Ovarian Surface Epithelium and Stromal Cells: Identification of Secreted Proteins1. Biology of Reproduction, 1994, 51, 1213-1221.	2.7	39
216	Developmental regulation of Sertoli cell lactate production by hormones and the testicular paracrine factor, PModS. Molecular and Cellular Endocrinology, 1994, 104, 67-73.	3.2	11

#	Article	IF	CITATIONS
217	Developmental Regulation of Sertoli Cell Aromatase Activity and Plasminogen Activator Production by Hormones, Retinoids and the Testicular Paracrine Factor, PModS1. Biology of Reproduction, 1992, 46, 586-594.	2.7	28
218	Cell-Cell Interactions and the Regulation of Testis Function. Annals of the New York Academy of Sciences, 1991, 637, 354-363.	3.8	92
219	Growth factors as mediators of testicular cell-cell interactions. Bailliere's Clinical Endocrinology and Metabolism, 1991, 5, 771-790.	1.0	29
220	Cell-Cell Interactions in the Testis*. Endocrine Reviews, 1991, 12, 45-77.	20.1	625
221	Mesenchymal-epithelial cell interactions in the ovary: estrogen-induced theca cell steroidogenesis. Molecular and Cellular Endocrinology, 1990, 72, R1-R5.	3.2	16
222	Cytochemical and Biochemical Characterization of Testicular Peritubular Myoid Cells1. Biology of Reproduction, 1989, 40, 811-823.	2.7	54
223	Transforming Growth FactorÎ ² Gene Expression and Action in the Seminiferous Tubule: Peritubular Cell-Sertoli Cell Interactions. Molecular Endocrinology, 1989, 3, 625-634.	3.7	132
224	Actions of Extracellular Matrix on Sertoli Cell Morphology and Function1. Biology of Reproduction, 1989, 40, 691-702.	2.7	29
225	Cellular localization of fibronectin gene expression in the seminiferous tubule. Molecular and Cellular Endocrinology, 1989, 66, 45-52.	3.2	17
226	Stimulation of Sertoli cell inhibin secretion by the testicular paracrine factor PModS. Molecular and Cellular Endocrinology, 1989, 66, 239-249.	3.2	54
227	Rat thecal/interstitial cells produce a mitogenic activity that promotes the growth of granulosa cells. Molecular and Cellular Endocrinology, 1988, 55, 209-217.	3.2	29
228	Rete Testis Fluid (RTF) Proteins: Purification and Characterization of RTF Albumin1. Biology of Reproduction, 1987, 37, 135-146.	2.7	14
229	Cell-Cell Interactions in the Testis. Annals of the New York Academy of Sciences, 1987, 513, 158-171.	3.8	41
230	Identification of a non-mitogenic paracrine factor involved in mesenchymal-epithelial cell interactions between testicular peritubular cells and Sertoli cells. Molecular and Cellular Endocrinology, 1986, 44, 85-97.	3.2	79
231	Androgen stimulation of sertoli cell function is enhanced by peritubular cells. Molecular and Cellular Endocrinology, 1985, 40, 115-122.	3.2	76
232	A Sulfated Glycoprotein Synthesized by Sertoli Cells and by Epididymal Cells is a Component of the Sperm Membrane 1. Biology of Reproduction, 1984, 31, 1087-1101.	2.7	213
233	Fibronectin Synthesis is a Marker for Peritubular Cell Contaminants in Sertoli Cell-Enriched Cultures. Biology of Reproduction, 1984, 30, 199-211.	2.7	212
234	Cooperativity between Sertoli Cells and Peritubular Myoid Cells in the Formation of the Basal Lamina in the Seminiferous Tubule. Annals of the New York Academy of Sciences, 1984, 438, 435-446.	3.8	84

#	Article	IF	CITATIONS
235	Sertoli Cells Synthesize and Secrete a Ceruloplasmin-Like Protein. Biology of Reproduction, 1983, 28, 1225-1229.	2.7	108
236	Analysis of Sertoli Cell-Secreted Proteins by Two-Dimensional Gel Electrophoresis. Biology of Reproduction, 1982, 27, 233-240.	2.7	134
237	Secretion of Testicular Transferrin by Cultured Sertoli Cells is Regulated by Hormones and Retinoids. Biology of Reproduction, 1982, 27, 211-221.	2.7	243