

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1544560/publications.pdf Version: 2024-02-01

Ιινι Υτι

#	Article	IF	CITATIONS
1	RQC helical hairpin in Bloom's syndrome helicase regulates DNA unwinding by dynamically intercepting nascent nucleotides. IScience, 2022, 25, 103606.	4.1	2
2	Two-phase dynamics of DNA supercoiling based on DNA polymer physics. Biophysical Journal, 2022, , .	0.5	3
3	Switching promotor recognition of phage RNA polymerase in silico along lab-directed evolution path. Biophysical Journal, 2022, 121, 582-595.	0.5	0
4	An Interpretable Convolutional Neural Network Framework for Analyzing Molecular Dynamics Trajectories: a Case Study on Functional States for G-Protein-Coupled Receptors. Journal of Chemical Information and Modeling, 2022, 62, 1399-1410.	5.4	11
5	Structure-Based Simulation and Sampling of Transcription Factor Protein Movements along DNA from Atomic-Scale Stepping to Coarse-Grained Diffusion. Journal of Visualized Experiments, 2022, , .	0.3	0
6	Computational investigations on target-site searching and recognition mechanisms by thymine DNA glycosylase during DNA repair process. Acta Biochimica Et Biophysica Sinica, 2022, 54, 796-806.	2.0	3
7	Dissecting nucleotide selectivity in viral RNA polymerases. Computational and Structural Biotechnology Journal, 2021, 19, 3339-3348.	4.1	11
8	Probing remdesivir nucleotide analogue insertion to SARS-CoV-2 RNA dependent RNA polymerase in viral replication. Molecular Systems Design and Engineering, 2021, 6, 888-902.	3.4	11
9	Revealing atomic-scale molecular diffusion of a plant-transcription factor WRKY domain protein along DNA. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	7.1	21
10	Allosteric regulation in CRISPR/Cas1-Cas2 protospacer acquisition mediated by DNA and Cas2. Biophysical Journal, 2021, 120, 3126-3137.	0.5	1
11	Inchworm stepping of Myc-Max heterodimer protein diffusion along DNA. Biochemical and Biophysical Research Communications, 2020, 533, 97-103.	2.1	8
12	Structural mechanism for guanylate-binding proteins (GBPs) targeting by the Shigella E3 ligase IpaH9.8. PLoS Pathogens, 2019, 15, e1007876.	4.7	39
13	A Viral T7 RNA Polymerase Ratcheting Along DNA With Fidelity Control. Computational and Structural Biotechnology Journal, 2019, 17, 638-644.	4.1	13
14	Determining selection free energetics from nucleotide pre-insertion to insertion in viral T7 RNA polymerase transcription fidelity control. Nucleic Acids Research, 2019, 47, 4721-4735.	14.5	12
15	Inspecting fluctuation and coordination around chromophore inside green fluorescent protein from water to nonpolar solvent. Proteins: Structure, Function and Bioinformatics, 2019, 87, 531-540.	2.6	2
16	Molecular mechanisms of RNA polymerase II transcription elongation elucidated by kinetic network models. Current Opinion in Structural Biology, 2018, 49, 54-62.	5.7	23
17	Dynamics of the excised base release in thymine DNA glycosylase during DNA repair process. Nucleic Acids Research, 2018, 46, 568-581.	14.5	21
18	Balancing Non-Equilibrium Driving with Nucleotide Selectivity at Kinetic Checkpoints in Polymerase Fidelity Control. Entropy, 2018, 20, 306.	2.2	9

Jin Yu

#	Article	IF	CITATIONS
19	Novel Mechanism for Cyclic Dinucleotide Degradation Revealed by Structural Studies of Vibrio Phosphodiesterase V-cGAP3. Journal of Molecular Biology, 2018, 430, 5080-5093.	4.2	13
20	Base-flipping dynamics from an intrahelical to an extrahelical state exerted by thymine DNA glycosylase during DNA repair process. Nucleic Acids Research, 2018, 46, 5410-5425.	14.5	31
21	How does supercoiling regulation on a battery of RNA polymerases impact on bacterial transcription bursting?. Physical Biology, 2018, 15, 066007.	1.8	8
22	Nucleotide Selectivity at a Preinsertion Checkpoint of T7 RNA Polymerase Transcription Elongation. Journal of Physical Chemistry B, 2017, 121, 3777-3786.	2.6	11
23	Imaging Metastable States and Transitions in Proteins by Trajectory Map. Journal of Physical Chemistry B, 2017, 121, 4678-4686.	2.6	5
24	Deciphering Intrinsic Inter-subunit Couplings that Lead to Sequential Hydrolysis of F 1 -ATPase Ring. Biophysical Journal, 2017, 113, 1440-1453.	0.5	7
25	T7 RNA polymerase translocation is facilitated by a helix opening on the fingers domain that may also prevent backtracking. Nucleic Acids Research, 2017, 45, 7909-7921.	14.5	25
26	Computational investigations on polymerase actions in gene transcription and replication: Combining physical modeling and atomistic simulations. Chinese Physics B, 2016, 25, 018706.	1.4	3
27	A Jump-from-Cavity Pyrophosphate Ion Release Assisted by a Key Lysine Residue in T7 RNA Polymerase Transcription Elongation. PLoS Computational Biology, 2015, 11, e1004624.	3.2	31
28	Constructing kinetic models to elucidate structural dynamics of a complete RNA polymerase II elongation cycle. Physical Biology, 2015, 12, 016004.	1.8	14
29	Computational Modeling to Elucidate Molecular Mechanisms of Epigenetic Memory. , 2015, , 245-264.		0
30	Protein denaturation at a single-molecule level: the effect of nonpolar environments and its implications on the unfolding mechanism by proteases. Nanoscale, 2015, 7, 2970-2977.	5.6	27
31	A Critical Residue Selectively Recruits Nucleotides for T7 RNA Polymerase Transcription Fidelity Control. Biophysical Journal, 2014, 107, 2130-2140.	0.5	22
32	Coordination and Control Inside Simple Biomolecular Machines. Advances in Experimental Medicine and Biology, 2014, 805, 353-384.	1.6	4
33	Efficient fidelity control by stepwise nucleotide selection in polymerase elongation Abstract: Polymerases select nucleotides. Computational and Mathematical Biophysics, 2014, 2, 141-160.	1.1	8
34	A Small Post-Translocation Energy Bias Aids Nucleotide Selection in T7 RNA Polymerase Transcription. Biophysical Journal, 2012, 102, 532-541.	0.5	30
35	Mechanochemistry of a Viral DNA Packaging Motor. Journal of Molecular Biology, 2010, 400, 186-203.	4.2	78
36	Coupling Translocation with Nucleic Acid Unwinding by NS3 Helicase. Journal of Molecular Biology, 2010, 404, 439-455.	4.2	11

Jin Yu

#	Article	IF	CITATIONS
37	PcrA Helicase Dismantles RecA Filaments by Reeling in DNA in Uniform Steps. Cell, 2010, 142, 544-555.	28.9	156
38	Fluorescence-Force Spectroscopy Maps Two-Dimensional Reaction Landscape of the Holliday Junction. Science, 2007, 318, 279-283.	12.6	270
39	Double-Stranded DNA Dissociates into Single Strands When Dragged into a Poor Solvent. Journal of the American Chemical Society, 2007, 129, 14710-14716.	13.7	78
40	How Directional Translocation is Regulated in a DNA Helicase Motor. Biophysical Journal, 2007, 93, 3783-3797.	0.5	30
41	Structure-Based Model of the Stepping Motor of PcrA Helicase. Biophysical Journal, 2006, 91, 2097-2114.	0.5	50
42	Mechanism of Gating and Ion Conductivity of a Possible Tetrameric Pore in Aquaporin-1. Structure, 2006, 14, 1411-1423.	3.3	149
43	PcrA Helicase, aÂMolecular Motor Studied from the Electronic to the Functional Level. , 2006, , 319-347.		8
44	Conformational model of the Holliday junction transition deduced from molecular dynamics simulations. Nucleic Acids Research, 2004, 32, 6683-6695.	14.5	31
45	The Lyapunov analysis of the highly excited bend motion of acetylene. Chemical Physics Letters, 2001, 343, 375-382.	2.6	4
46	Classical characters of highly excited bend dynamics of acetylene in two coupled SU(2) coset spaces. Journal of Chemical Physics, 2000, 113, 647-652.	3.0	9
47	Multifractal analysis for the eigencoefficients of the eigenstates of highly excited vibration.	2.6	5