Biao Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1544551/publications.pdf Version: 2024-02-01

RIAO KONC

#	Article	IF	CITATIONS
1	Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives. Advanced Materials, 2017, 29, 1603436.	11.1	872
2	Reduced Mesoporous Co ₃ O ₄ Nanowires as Efficient Water Oxidation Electrocatalysts and Supercapacitor Electrodes. Advanced Energy Materials, 2014, 4, 1400696.	10.2	852
3	Selective Electrochemical H ₂ O ₂ Production through Twoâ€Electron Oxygen Electrochemistry. Advanced Energy Materials, 2018, 8, 1801909.	10.2	498
4	Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Science Advances, 2017, 3, eaao3170.	4.7	252
5	Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Science Advances, 2017, 3, e1601978.	4.7	245
6	New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications. Chemical Society Reviews, 2015, 44, 7997-8018.	18.7	240
7	Graphene oxide/core–shell structured metal–organic framework nano-sandwiches and their derived cobalt/N-doped carbon nanosheets for oxygen reduction reactions. Journal of Materials Chemistry A, 2017, 5, 10182-10189.	5.2	163
8	Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks. Nature Chemistry, 2016, 8, 171-178.	6.6	153
9	A Micelle Fusion–Aggregation Assembly Approach to Mesoporous Carbon Materials with Rich Active Sites for Ultrasensitive Ammonia Sensing. Journal of the American Chemical Society, 2016, 138, 12586-12595.	6.6	152
10	Carbon-based SERS biosensor: from substrate design to sensing and bioapplication. NPG Asia Materials, 2021, 13, .	3.8	143
11	Direct Superassemblies of Freestanding Metal–Carbon Frameworks Featuring Reversible Crystalline-Phase Transformation for Electrochemical Sodium Storage. Journal of the American Chemical Society, 2016, 138, 16533-16541.	6.6	120
12	Hierarchically tetramodal-porous zeolite ZSM-5 monoliths with template-free-derived intracrystalline mesopores. Chemical Science, 2014, 5, 1565.	3.7	98
13	Nanobiohybrids: Materials approaches for bioaugmentation. Science Advances, 2020, 6, eaaz0330.	4.7	93
14	Implantable and Biodegradable Micro-Supercapacitor Based on a Superassembled Three-Dimensional Network Zn@PPy Hybrid Electrode. ACS Applied Materials & Interfaces, 2021, 13, 8285-8293.	4.0	92
15	Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. Nano Research, 2015, 8, 2503-2514.	5.8	84
16	Ultralight Mesoporous Magnetic Frameworks by Interfacial Assembly of Prussian Blue Nanocubes. Angewandte Chemie - International Edition, 2014, 53, 2888-2892.	7.2	78
17	Constructing Three-Dimensional Mesoporous Bouquet-Posy-like TiO ₂ Superstructures with Radially Oriented Mesochannels and Single-Crystal Walls. Journal of the American Chemical Society, 2017, 139, 517-526.	6.6	76
18	Amidoxime-Functionalized Macroporous Carbon Self-Refreshed Electrode Materials for Rapid and High-Capacity Removal of Heavy Metal from Water. ACS Central Science, 2019, 5, 719-726.	5.3	76

#	Article	IF	CITATIONS
19	Core–Shell Nanofibrous Materials with High Particulate Matter Removal Efficiencies and Thermally Triggered Flame Retardant Properties. ACS Central Science, 2018, 4, 894-898.	5.3	73
20	Interfacial Superâ€Assembled Porous CeO ₂ /C Frameworks Featuring Efficient and Sensitive Decomposing Li ₂ O ₂ for Smart Li–O ₂ Batteries. Advanced Energy Materials, 2019, 9, 1901751.	10.2	71
21	Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Research, 2020, 13, 1013-1019.	5.8	69
22	Toxicity of different zinc oxide nanomaterials and dose-dependent onset and development of Parkinson's disease-like symptoms induced by zinc oxide nanorods. Environment International, 2021, 146, 106179.	4.8	67
23	Superassembled Biocatalytic Porous Framework Micromotors with Reversible and Sensitive pH‧peed Regulation at Ultralow Physiological H ₂ O ₂ Concentration. Advanced Functional Materials, 2019, 29, 1808900.	7.8	66
24	Kinetics-Controlled Super-Assembly of Asymmetric Porous and Hollow Carbon Nanoparticles as Light-Sensitive Smart Nanovehicles. Journal of the American Chemical Society, 2022, 144, 1634-1646.	6.6	64
25	Oriented Mesoporous Nanopyramids as Versatile Plasmon-Enhanced Interfaces. Journal of the American Chemical Society, 2014, 136, 6822-6825.	6.6	62
26	Nanoscale zero-valent iron in mesoporous carbon (nZVI@C): stable nanoparticles for metal extraction and catalysis. Journal of Materials Chemistry A, 2017, 5, 4478-4485.	5.2	62
27	Interfacial Assembly of Mesoporous Silicaâ€Based Optical Heterostructures for Sensing Applications. Advanced Functional Materials, 2020, 30, 1906950.	7.8	62
28	Mesoporous Fe ₂ O ₃ –CdS Heterostructures for Real-Time Photoelectrochemical Dynamic Probing of Cu ²⁺ . Analytical Chemistry, 2015, 87, 6703-6708.	3.2	61
29	Discovery of intrinsic quantum anomalous Hall effect in organic Mn-DCA lattice. Applied Physics Letters, 2017, 110, .	1.5	61
30	Förster resonance energy transfer (FRET) paired carbon dot-based complex nanoprobes: versatile platforms for sensing and imaging applications. Materials Chemistry Frontiers, 2020, 4, 128-139.	3.2	61
31	Sequential Superassembly of Nanofiber Arrays to Carbonaceous Ordered Mesoporous Nanowires and Their Heterostructure Membranes for Osmotic Energy Conversion. Journal of the American Chemical Society, 2021, 143, 6922-6932.	6.6	61
32	Interfacial Superâ€Assembly of Ordered Mesoporous Carbonâ€5ilica/AAO Hybrid Membrane with Enhanced Permselectivity for Temperature―and pHâ€5ensitive Smart Ion Transport. Angewandte Chemie - International Edition, 2021, 60, 26167-26176.	7.2	58
33	Low-crystalline mesoporous CoFe ₂ O ₄ /C composite with oxygen vacancies for high energy density asymmetric supercapacitors. RSC Advances, 2017, 7, 55513-55522.	1.7	55
34	Superassembly of Porous Fe _{tet} (NiFe) _{oct} O Frameworks with Stable Octahedron and Multistage Structure for Superior Lithium–Oxygen Batteries. Advanced Energy Materials, 2020, 10, 1904262.	10.2	55
35	Superassembly of Surface-Enriched Ru Nanoclusters from Trapping–Bonding Strategy for Efficient Hydrogen Evolution. ACS Nano, 2022, 16, 7993-8004.	7.3	54
36	Interfacially Superâ€Assembled Asymmetric and H ₂ O ₂ Sensitive Multilayerâ€Sandwich Magnetic Mesoporous Silica Nanomotors for Detecting and Removing Heavy Metal Ions. Advanced Functional Materials, 2021, 31, 2010694.	7.8	49

#	Article	IF	CITATIONS
37	Superâ€Assembled Hierarchical Cellulose Aerogelâ€Gelatin Solid Electrolyte for Implantable and Biodegradable Zinc Ion Battery. Advanced Functional Materials, 2022, 32, .	7.8	48
38	Freestanding 3D graphene/cobalt sulfide composites for supercapacitors and hydrogen evolution reaction. RSC Advances, 2015, 5, 6886-6891.	1.7	47
39	Growth of Singleâ€Layered Twoâ€Dimensional Mesoporous Polymer/Carbon Films by Selfâ€Assembly of Monomicelles at the Interfaces of Various Substrates. Angewandte Chemie - International Edition, 2015, 54, 8425-8429.	7.2	45
40	Mesoporous TiO2/TiC@C Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage. IScience, 2018, 3, 149-160.	1.9	45
41	Interfacial Superassembly of Grape-Like MnO–Ni@C Frameworks for Superior Lithium Storage. ACS Applied Materials & Interfaces, 2020, 12, 13770-13780.	4.0	45
42	Interfacial Super-Assembly of Ordered Mesoporous Silica–Alumina Heterostructure Membranes with pH-Sensitive Properties for Osmotic Energy Harvesting. ACS Applied Materials & Interfaces, 2021, 13, 8782-8793.	4.0	44
43	Metal–Organic Framework–Plant Nanobiohybrids as Living Sensors for On-Site Environmental Pollutant Detection. Environmental Science & Technology, 2020, 54, 11356-11364.	4.6	42
44	Wood-Derived Bimetallic and Heteroatomic Hierarchically Porous Carbon Aerogel for Rechargeable Flow Zn–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 39458-39469.	4.0	38
45	Biocatalytic metal–organic framework nanomotors for active water decontamination. Chemical Communications, 2020, 56, 14837-14840.	2.2	34
46	Bio-inspired porous antenna-like nanocube/nanowire heterostructure as ultra-sensitive cellular interfaces. NPG Asia Materials, 2014, 6, e117-e117.	3.8	33
47	Superâ€Assembled Hierarchical CoO Nanosheetsâ€Cu Foam Composites as Multiâ€Level Hosts for Highâ€Performance Lithium Metal Anodes. Small, 2021, 17, e2101301.	5.2	33
48	One-dimensional CoS ₂ –MoS ₂ nano-flakes decorated MoO ₂ sub-micro-wires for synergistically enhanced hydrogen evolution. Nanoscale, 2019, 11, 3500-3505.	2.8	31
49	Branched Artificial Nanofinger Arrays by Mesoporous Interfacial Atomic Rearrangement. Journal of the American Chemical Society, 2015, 137, 4260-4266.	6.6	30
50	Interfacial Superâ€Assembly of Tâ€Mode Janus Porous Heterochannels from Layered Graphene and Aluminum Oxide Array for Smart Oriented Ion Transportation. Small, 2021, 17, e2100141.	5.2	30
51	Recent Advances in Heterosilica-Based Micro/Nanomotors: Designs, Biomedical Applications, and Future Perspectives. Chemistry of Materials, 2021, 33, 3022-3046.	3.2	30
52	General Synergistic Capture-Bonding Superassembly of Atomically Dispersed Catalysts on Micropore-Vacancy Frameworks. Nano Letters, 2022, 22, 2889-2897.	4.5	27
53	Frontier luminous strategy of functional silica nanohybrids in sensing and bioimaging: From ACQ to AIE. Aggregate, 2022, 3, e121.	5.2	26
54	Soft Patch Interface-Oriented Superassembly of Complex Hollow Nanoarchitectures for Smart Dual-Responsive Nanospacecrafts. Journal of the American Chemical Society, 2022, 144, 7778-7789.	6.6	25

#	Article	IF	CITATIONS
55	Ligand-Mediated Spatially Controllable Superassembly of Asymmetric Hollow Nanotadpoles with Fine-Tunable Cavity as Smart H ₂ O ₂ -Sensitive Nanoswimmers. ACS Nano, 2021, 15, 11451-11460.	7.3	24
56	Three-dimensional WS ₂ nanosheet networks for H ₂ O ₂ produced for cell signaling. Nanoscale, 2016, 8, 5786-5792.	2.8	23
57	Electrospinning Superassembled Mesoporous AlEgen–Organosilica Frameworks Featuring Diversified Forms and Superstability for Wearable and Washable Solid-State Fluorescence Smart Sensors. Analytical Chemistry, 2021, 93, 2367-2376.	3.2	23
58	Super-Assembled Chiral Mesostructured Heteromembranes for Smart and Sensitive Couple-Accelerated Enantioseparation. Journal of the American Chemical Society, 2022, 144, 13794-13805.	6.6	22
59	Super-assembled core/shell fibrous frameworks with dual growth factors for <i>in situ</i> cementum–ligament–bone complex regeneration. Biomaterials Science, 2020, 8, 2459-2471.	2.6	21
60	A vesicle-aggregation-assembly approach to highly ordered mesoporous Î ³ -alumina microspheres with shifted double-diamond networks. Chemical Science, 2018, 9, 7705-7714.	3.7	20
61	Interfacial Super-Assembly of Nanofluidic Heterochannels from Layered Graphene and Alumina Oxide Arrays for Label-Free Histamine-Specific Detection. Analytical Chemistry, 2021, 93, 2982-2987.	3.2	20
62	Kineticsâ€Regulated Interfacial Selective Superassembly of Asymmetric Smart Nanovehicles with Tailored Topological Hollow Architectures. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
63	Sub-5 nm porous nanocrystals: interfacial site-directed growth on graphene for efficient biocatalysis. Chemical Science, 2015, 6, 4029-4034.	3.7	18
64	Interfacial tissue engineering of heart regenerative medicine based on soft cell-porous scaffolds. Journal of Thoracic Disease, 2018, 10, S2333-S2345.	0.6	18
65	Liquid–Solid Interfacial Assemblies of Soft Materials for Functional Freestanding Layered Membrane–Based Devices toward Electrochemical Energy Systems. Advanced Energy Materials, 2019, 9, 1804005.	10.2	18
66	A Tough Metalâ€Coordinated Elastomer: A Fatigueâ€Resistant, Notchâ€Insensitive Material with an Excellent Selfâ€Healing Capacity. ChemPlusChem, 2019, 84, 432-440.	1.3	18
67	Implantable and Biodegradable Macroporous Iron Oxide Frameworks for Efficient Regeneration and Repair of Infracted Heart. Theranostics, 2017, 7, 1966-1975.	4.6	17
68	Core‣hell Structured Microâ€Nanomotors: Construction, Shell Functionalization, Applications, and Perspectives. Small, 2022, 18, e2102887.	5.2	16
69	CoFe ₂ O ₄ Nanocrystals Mediated Crystallization Strategy for Magnetic Functioned ZSMâ€5 Catalysts. Advanced Functional Materials, 2018, 28, 1802088.	7.8	15
70	Interfacial assembly of mesoporous nanopyramids as ultrasensitive cellular interfaces featuring efficient direct electrochemistry. NPG Asia Materials, 2015, 7, e204-e204.	3.8	14
71	Super-assembled sandwich-like Au@MSN@Ag nanomatrices for high-throughput and efficient detection of small biomolecules. Nano Research, 2022, 15, 2722-2733.	5.8	14
72	Interfacial Superassembly of Mesoporous Titania Nanopillar-Arrays/Alumina Oxide Heterochannels for Light- and pH-Responsive Smart Ion Transport. ACS Central Science, 2022, 8, 361-369.	5.3	14

#	Article	IF	CITATIONS
73	Interfacial Superassembly of Light-Responsive Mechanism-Switchable Nanomotors with Tunable Mobility and Directionality. ACS Applied Materials & Interfaces, 2022, 14, 15517-15528.	4.0	14
74	Interfacial Assembly of Functional Mesoporous Carbonâ€Based Materials into Films for Batteries and Electrocatalysis. Advanced Materials Interfaces, 2022, 9, .	1.9	13
75	Interfacial Superâ€Assembly of Ordered Mesoporous Carbonâ€Silica/AAO Hybrid Membrane with Enhanced Permselectivity for Temperature―and pHâ€Sensitive Smart Ion Transport. Angewandte Chemie, 2021, 133, 26371-26380.	1.6	12
76	Artificial metabolism-inspired photoelectrochemical probing of biomolecules and cells. Journal of Materials Chemistry A, 2014, 2, 15752-15757.	5.2	11
77	pHâ€Gated Activation of Gene Transcription and Translation in Biocatalytic Metal–Organic Framework Artificial Cells. Advanced NanoBiomed Research, 2021, 1, 2000034.	1.7	11
78	Super-Assembled Periodic Mesoporous Organosilica Frameworks for Real-Time Hypoxia-Triggered Drug Release and Monitoring. ACS Applied Materials & Interfaces, 2021, 13, 50246-50257.	4.0	11
79	Super-Assembled Hierarchical and Stable N-Doped Carbon Nanotube Nanoarrays for Dendrite-Free Lithium Metal Batteries. ACS Applied Energy Materials, 2022, 5, 815-824.	2.5	11
80	Mesoporous Silica Materials: Interfacial Assembly of Mesoporous Silicaâ€Based Optical Heterostructures for Sensing Applications (Adv. Funct. Mater. 9/2020). Advanced Functional Materials, 2020, 30, 2070057.	7.8	10
81	Superassembled Red Phosphorus Nanorod–Reduced Graphene Oxide Microflowers as Highâ€Performance Lithiumâ€Ion Battery Anodes. Advanced Engineering Materials, 2021, 23, 2001507.	1.6	10
82	Interfacially Super-Assembled Tyramine-Modified Mesoporous Silica-Alumina Oxide Heterochannels for Label-Free Tyrosinase Detection. Analytical Chemistry, 2022, 94, 2589-2596.	3.2	10
83	Artificial Blood Vessel Frameworks from 3D Printing-Based Super-Assembly as <i>In Vitro</i> Models for Early Diagnosis of Intracranial Aneurysms. Chemistry of Materials, 2020, 32, 3188-3198.	3.2	8
84	Laser Cladding Induced Spherical Graphitic Phases by Super-Assembly of Graphene-Like Microstructures and the Antifriction Behavior. ACS Central Science, 2021, 7, 318-326.	5.3	8
85	Interfacial assembly of functional mesoporous nanomatrices for laser desorption/ionization mass spectrometry. Nano Today, 2022, 42, 101365.	6.2	8
86	Super-assembly of freestanding graphene oxide-aramid fiber membrane with T-mode subnanochannels for sensitive ion transport. Analyst, The, 2022, 147, 652-660.	1.7	8
87	Interfacial Assembly of Nanowire Arrays toward Carbonaceous Mesoporous Nanorods and Superstructures. Small, 2022, 18, e2104477.	5.2	7
88	Analysis of Serum Metabolites to Diagnose Bicuspid Aortic Valve. Scientific Reports, 2016, 6, 37023.	1.6	6
89	Zn ⁺ –O [–] Dual-Spin Surface State Formation by Modification of ZnO Nanoparticles with Diboron Compounds. Langmuir, 2019, 35, 14173-14179.	1.6	5
90	Super-assembled silica nanoprobes for intracellular Zn(<scp>ii</scp>) sensing and reperfusion injury treatment through <i>in situ</i> MOF crystallization. Analyst, The, 2021, 146, 6788-6797.	1.7	5

Βιάο Κόνς

#	Article	IF	CITATIONS
91	Interfacially Superâ€Assembled Benzimidazole Derivativeâ€Based Mesoporous Silica Nanoprobe for Sensitive Copper (II) Detection and Biosensing in Living Cells. Chemistry - A European Journal, 2022, 28, .	1.7	5
92	Patient-Derived Organoid Model in the Prediction of Chemotherapeutic Drug Response in Colorectal Cancer. ACS Biomaterials Science and Engineering, 2022, 8, 3515-3525.	2.6	3
93	Li–O ₂ Batteries: Interfacial Superâ€Assembled Porous CeO ₂ /C Frameworks Featuring Efficient and Sensitive Decomposing Li ₂ O ₂ for Smart Li–O ₂ Batteries (Adv. Energy Mater. 40/2019). Advanced Energy Materials, 2019, 9, 1970157.	10.2	2
94	Superassembled Hierarchical Asymmetric Magnetic Mesoporous Nanorobots Driven by Smart Confined Catalytic Degradation. Chemistry - A European Journal, 2022, 28, e202200307.	1.7	2
95	Superassembled Hierarchical Asymmetric Magnetic Mesoporous Nanorobots Driven by Smart Confined Catalytic Degradation. Chemistry - A European Journal, 2022, 28, e202201278.	1.7	2
96	Rücktitelbild: Growth of Single-Layered Two-Dimensional Mesoporous Polymer/Carbon Films by Self-Assembly of Monomicelles at the Interfaces of Various Substrates (Angew. Chem. 29/2015). Angewandte Chemie, 2015, 127, 8686-8686.	1.6	0
97	Kineticsâ€Regulated Interfacial Selective Superassembly of Asymmetric Smart Nanovehicles with Tailored Topological Hollow Architectures. Angewandte Chemie, 0, , .	1.6	0
98	Innenrücktitelbild: Kineticsâ€Regulated Interfacial Selective Superassembly of Asymmetric Smart Nanovehicles with Tailored Topological Hollow Architectures (Angew. Chem. 12/2022). Angewandte Chemie, 2022, 134, .	1.6	0

7