Naoki Nishida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1544256/publications.pdf Version: 2024-02-01

NAOKI NISHIDA

#	Article	IF	CITATIONS
1	Iron-based Nanoparticles and Their Mössbauer Spectra. Radioisotopes, 2019, 68, 125-143.	0.1	4
2	Synthesis of Cu-doped δ-FeOOH nanoparticles by a wet chemical method. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	4
3	Manganese-doped feroxyhyte nano-urchins produced by chemical methods. Hyperfine Interactions, 2018, 239, 1.	0.2	2
4	Effect of laser irradiation on iron carbide nanoparticles produced by laser ablation in ethanol. Hyperfine Interactions, 2017, 238, 1.	0.2	6
5	Mixture of silver and iron oxide nanoparticles produced by chemical methods. Hyperfine Interactions, 2017, 238, 1.	0.2	4
6	Wet chemical synthesis of zinc-iron oxide nanocomposite. Hyperfine Interactions, 2017, 238, 1.	0.2	6
7	Mössbauer spectra of iron (III) sulfide particles. Hyperfine Interactions, 2017, 238, 1.	0.2	3
8	One-pot production of copper ferrite nanoparticles using a chemical method. Hyperfine Interactions, 2016, 237, 1.	0.2	7
9	Mössbauer study of iron carbide nanoparticles produced by laser ablation in alcohols. Hyperfine Interactions, 2016, 237, 1.	0.2	10
10	Iron films deposited on porous alumina substrates. Hyperfine Interactions, 2016, 237, 1.	0.2	2
11	Synthesis of superparamagnetic δ-FeOOH nanoparticles by a chemical method. Applied Surface Science, 2016, 387, 996-1001.	3.1	22
12	Intense Plasmon-induced Cotton Effects in Colloidal Silver Triangular Nanoplates Synthesized by a Ligand-exchange Process. Chemistry Letters, 2014, 43, 1227-1229.	0.7	4
13	Production of Oxidation-resistant Copper Nanoparticles on Carbon Nanotubes by Photoreduction. Chemistry Letters, 2013, 42, 168-170.	0.7	9
14	<i>In-Situ</i> Heating TEM Observation of Microscopic Structural Changes of Size-Controlled Metallic Copper/Gelatin Composite. Journal of Nanoscience and Nanotechnology, 2012, 12, 7764-7776.	0.9	8
15	Chiral Glutathione-protected Ag Triangular Nanoplates Synthesized by Protectant-substitution Reaction: Chiroptical and Surface Structure Analysis. Chemistry Letters, 2012, 41, 926-928.	0.7	1
16	Stable Transport of Gas-born Ag Nanoparticles into Liquid Phase Mediated by Poly(vinylpyrrolidone) Molecules. Chemistry Letters, 2011, 40, 144-146.	0.7	4
17	Regenerative synthesis of copper nanoparticles byÂphotoirradiation. European Physical Journal D, 2011, 63, 307-310.	0.6	19
18	One-pot Preparation of Antioxidized Copper Fine Particles with a Unique Structure by Chemical Reduction at Room Temperature. Chemistry Letters, 2010, 39, 548-549.	0.7	31

Ναοκι Νιςμιda

#	Article	IF	CITATIONS
19	Detailed investigation of the reduction process of cupric oxide (CuO) to form metallic copper fine particles with a unique diameter. Journal of Materials Science, 2010, 45, 6433-6439.	1.7	11
20	Conformational study of chiral penicillamine ligand on optically active silver nanoclusters with IR and VCD spectroscopy. Chemical Physics, 2010, 368, 28-37.	0.9	24
21	Fluorescent Gold Nanoparticle Superlattices. Advanced Materials, 2008, 20, 4719-4723.	11.1	40
22	Chiral Functionalization of Optically Inactive Monolayer-Protected Silver Nanoclusters by Chiral Ligand-Exchange Reactions. Langmuir, 2008, 24, 2759-2766.	1.6	77
23	Synthesis and Chiroptical Study ofd/l-Penicillamine-Capped Silver Nanoclusters. Chemistry of Materials, 2007, 19, 2831-2841.	3.2	118
24	Large Optical Activity of Gold Nanocluster Enantiomers Induced by a Pair of Optically Active Penicillamines. Journal of the American Chemical Society, 2005, 127, 15536-15543.	6.6	243