Andrew B Foster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1543873/publications.pdf

Version: 2024-02-01

840776 996975 15 449 11 15 citations h-index g-index papers 16 16 16 447 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Understanding the Topology of the Polymer of Intrinsic Microporosity PIM-1: Cyclics, Tadpoles, and Network Structures and Their Impact on Membrane Performance. Macromolecules, 2020, 53, 569-583.	4.8	59
2	Synergistic enhancement of gas selectivity in thin film composite membranes of PIM-1. Journal of Materials Chemistry A, 2019, 7, 6417-6430.	10.3	55
3	2D boron nitride nanosheets in PIM-1 membranes for CO2/CH4 separation. Journal of Membrane Science, 2021, 636, 119527.	8.2	52
4	Gas separation performance of MMMs containing (PIM-1)-functionalized GO derivatives. Journal of Membrane Science, 2021, 623, 118902.	8.2	48
5	Mitigation of Physical Aging with Mixed Matrix Membranes Based on Cross-Linked PIM-1 Fillers and PIM-1. ACS Applied Materials & Samp; Interfaces, 2020, 12, 46756-46766.	8.0	47
6	Conjugated Polymer Nanoparticles by Suzuki–Miyaura Cross-Coupling Reactions in an Emulsion at Room Temperature. Macromolecules, 2014, 47, 6531-6539.	4.8	39
7	Importance of small loops within PIM-1 topology on gas separation selectivity in thin film composite membranes. Journal of Materials Chemistry A, 2021, 9, 21807-21823.	10.3	30
8	Using Soft Polymer Template Engineering of Mesoporous TiO ₂ Scaffolds to Increase Perovskite Grain Size and Solar Cell Efficiency. ACS Applied Materials & Engineering 2020, 12, 18578-18589.	8.0	27
9	Intrinsically Microporous Polymer Nanosheets for Highâ€Performance Gas Separation Membranes. Macromolecular Rapid Communications, 2020, 41, e1900572.	3.9	23
10	PIM-1/Holey Graphene Oxide Mixed Matrix Membranes for Gas Separation: Unveiling the Role of Holes. ACS Applied Materials & Diverge Company (1988) 13, 55517-55533.	8.0	22
11	Novel Mixed Matrix Membranes Based on Polymer of Intrinsic Microporosity PIM-1 Modified with Metal-Organic Frameworks for Removal of Heavy Metal Ions and Food Dyes by Nanofiltration. Membranes, 2022, 12, 14.	3.0	19
12	Influence of Polymer Topology on Gas Separation Membrane Performance of the Polymer of Intrinsic Microporosity PIM-Py. ACS Applied Polymer Materials, 2021, 3, 3485-3495.	4.4	11
13	Use of <i>N</i> â€methyliminodiacetic acid boronate esters in suzukiâ€miyaura crossâ€coupling polymerizations of triarylamine and fluorene monomers. Journal of Polymer Science Part A, 2017, 55, 2798-2806.	2.3	6
14	Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporation. Separation and Purification Technology, 2022, 299, 121693.	7.9	6
15	Seeking synergy in membranes: blends and mixtures with polymers of intrinsic microporosity. Current Opinion in Chemical Engineering, 2022, 36, 100792.	7.8	5