Debashis Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1543820/publications.pdf

Version: 2024-02-01

567281 677142 26 521 15 22 citations h-index g-index papers 32 32 32 566 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Visible-light-induced metal-free coupling of C(sp ³)–H sources with heteroarenes. Green Chemistry, 2022, 24, 3056-3080.	9.0	29
2	Visible light-induced functionalization of indazole and pyrazole: a recent update. Chemical Communications, 2022, 58, 4435-4455.	4.1	26
3	Synthesis of Unsymmetrical Biheteroarenes <i>via</i> Dehydrogenative and Decarboxylative Coupling: a Decade Update. Chemical Record, 2022, 22, e202100288.	5.8	7
4	Three-Component Carbosilylation of Alkenes by Merging Iron and Visible-Light Photocatalysis. Organic Letters, 2021, 23, 6510-6514.	4.6	38
5	Electrochemical Functionalization of Imidazopyridine and Indazole: An Overview. Advanced Synthesis and Catalysis, 2021, 363, 5047-5071.	4.3	49
6	More Than Just a Reagent: The Rise of Renewable Organohydrides for Catalytic Reduction of Carbon Dioxide. ChemSusChem, 2021, 14, 824-841.	6.8	13
7	Zwitterionic imidazolium salt: an effective green organocatalyst in synthetic chemistry. ChemistrySelect, 2021, .	1.5	0
8	Photochemical H ₂ Evolution Using a Ru–Rh Supramolecular Photocatalyst. Energy & Su	5.1	8
9	Visible-light-promoted oxidative coupling of styrene with cyclic ethers. Science China Chemistry, 2020, 63, 42-46.	8.2	25
10	Ligandâ€Assisted Electrochemical CO ₂ Reduction by Ruâ€Polypyridyl Complexes. European Journal of Inorganic Chemistry, 2020, 2020, 1814-1818.	2.0	12
11	A Ru(II)–Mn(I) Supramolecular Photocatalyst for CO ₂ Reduction. Organometallics, 2020, 39, 1511-1518.	2.3	24
12	Rhodium-Catalyzed Directed C–H Amidation of Imidazoheterocycles with Dioxazolones. Organic Letters, 2019, 21, 4905-4909.	4.6	55
13	Supramolecular Photocatalyst with a Rh(III)-Complex Catalyst Unit for CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 2648-2657.	6.7	26
14	Electrochemical behavior of a Rh(pentamethylcyclopentadienyl) complex bearing an NAD ⁺ /NADH-functionalized ligand. Dalton Transactions, 2018, 47, 5207-5216.	3.3	2
15	Base assisted C–C coupling between carbonyl and polypyridyl ligands in a Ru-NADH-type carbonyl complex. Dalton Transactions, 2017, 46, 4373-4381.	3.3	10
16	Catalytic Hydride Transfer to CO ₂ Using Ru-NAD-Type Complexes under Electrochemical Conditions. Inorganic Chemistry, 2017, 56, 11066-11073.	4.0	22
17	Four-Electron Reduction of a New Ruthenium Dicarbonyl Complex Having Two NAD Model Ligands through Decarboxylation in Water. Inorganic Chemistry, 2016, 55, 11613-11616.	4.0	9
18	Ordered short channel mesoporous silica modified with 1,3,5-triazine–piperazine as a versatile recyclable basic catalyst for cross-aldol, Knoevenagel and conjugate addition reactions with isatins. RSC Advances, 2015, 5, 17843-17850.	3.6	18

#	Article	IF	CITATION
19	Organocatalyzed Enantioselective Allylation of Isatins by Using a Chiral Amino Alcohol Derived Squaramide as Catalyst. European Journal of Organic Chemistry, 2015, 2015, 2801-2806.	2.4	20
20	Phosphotungstic Acid as an Efficient Catalyst for Allylation of Isatins and ⟨i⟩N⟨ i⟩â€⟨i⟩tert⟨ i⟩â€Butyloxycarbonylamido Sulfones Under Solventâ€Free Conditions. Asian Journal of Organic Chemistry, 2014, 3, 1173-1181.	2.7	6
21	Manganese complexes with non-porphyrin N ₄ ligands as recyclable catalyst for the asymmetric epoxidation of olefins. Catalysis Science and Technology, 2014, 4, 208-217.	4.1	32
22	Oxazoline derivatives tagged with tosylated amino acids as recyclable organocatalysts for enantioselective allylation of aldehydes. RSC Advances, 2014, 4, 12257.	3 . 6	14
23	Asymmetric allylation of sulfonyl imines catalyzed by in situ generated Cu(ii) complexes of chiral amino alcohol based Schiff bases. RSC Advances, 2014, 4, 56424-56433.	3.6	12
24	Synthetically amenable amide derivatives of tosylated-amino acids as organocatalysts for enantioselective allylation of aldehydes: computational rationale for enantioselectivity. Organic and Biomolecular Chemistry, 2013, 11, 3451.	2.8	19
25	Synthesis of Chiral Ligands with Multiple Stereogenic Centers and Their Application in Titanium(IV)â€Catalyzed Enantioselective Desymmetrization of <i>mesoâ€</i> Fpoxides. ChemCatChem, 2013, 5, 2336-2342.	3.7	22
26	Titanium complexes of chiral amino alcohol derived Schiff bases as efficient catalysts in asymmetric oxidation of prochiral sulfides with hydrogen peroxide as an oxidant. Journal of Molecular Catalysis A, 2012, 361-362, 36-44.	4.8	22