Debashis Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1543820/publications.pdf Version: 2024-02-01

DEBACHIC CHOCH

#	Article	IF	CITATIONS
1	Rhodium-Catalyzed Directed C–H Amidation of Imidazoheterocycles with Dioxazolones. Organic Letters, 2019, 21, 4905-4909.	4.6	55
2	Electrochemical Functionalization of Imidazopyridine and Indazole: An Overview. Advanced Synthesis and Catalysis, 2021, 363, 5047-5071.	4.3	49
3	Three-Component Carbosilylation of Alkenes by Merging Iron and Visible-Light Photocatalysis. Organic Letters, 2021, 23, 6510-6514.	4.6	38
4	Manganese complexes with non-porphyrin N ₄ ligands as recyclable catalyst for the asymmetric epoxidation of olefins. Catalysis Science and Technology, 2014, 4, 208-217.	4.1	32
5	Visible-light-induced metal-free coupling of C(sp ³)–H sources with heteroarenes. Green Chemistry, 2022, 24, 3056-3080.	9.0	29
6	Supramolecular Photocatalyst with a Rh(III)-Complex Catalyst Unit for CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 2648-2657.	6.7	26
7	Visible light-induced functionalization of indazole and pyrazole: a recent update. Chemical Communications, 2022, 58, 4435-4455.	4.1	26
8	Visible-light-promoted oxidative coupling of styrene with cyclic ethers. Science China Chemistry, 2020, 63, 42-46.	8.2	25
9	A Ru(II)–Mn(I) Supramolecular Photocatalyst for CO ₂ Reduction. Organometallics, 2020, 39, 1511-1518.	2.3	24
10	Titanium complexes of chiral amino alcohol derived Schiff bases as efficient catalysts in asymmetric oxidation of prochiral sulfides with hydrogen peroxide as an oxidant. Journal of Molecular Catalysis A, 2012, 361-362, 36-44.	4.8	22
11	Synthesis of Chiral Ligands with Multiple Stereogenic Centers and Their Application in Titanium(IV)â€Catalyzed Enantioselective Desymmetrization of <i>mesoâ€</i> Epoxides. ChemCatChem, 2013, 5, 2336-2342.	3.7	22
12	Catalytic Hydride Transfer to CO ₂ Using Ru-NAD-Type Complexes under Electrochemical Conditions. Inorganic Chemistry, 2017, 56, 11066-11073.	4.0	22
13	Organocatalyzed Enantioselective Allylation of Isatins by Using a Chiral Amino Alcohol Derived Squaramide as Catalyst. European Journal of Organic Chemistry, 2015, 2015, 2801-2806.	2.4	20
14	Synthetically amenable amide derivatives of tosylated-amino acids as organocatalysts for enantioselective allylation of aldehydes: computational rationale for enantioselectivity. Organic and Biomolecular Chemistry, 2013, 11, 3451.	2.8	19
15	Ordered short channel mesoporous silica modified with 1,3,5-triazine–piperazine as a versatile recyclable basic catalyst for cross-aldol, Knoevenagel and conjugate addition reactions with isatins. RSC Advances, 2015, 5, 17843-17850.	3.6	18
16	Oxazoline derivatives tagged with tosylated amino acids as recyclable organocatalysts for enantioselective allylation of aldehydes. RSC Advances, 2014, 4, 12257.	3.6	14
17	More Than Just a Reagent: The Rise of Renewable Organohydrides for Catalytic Reduction of Carbon Dioxide. ChemSusChem, 2021, 14, 824-841.	6.8	13
18	Asymmetric allylation of sulfonyl imines catalyzed by in situ generated Cu(ii) complexes of chiral amino alcohol based Schiff bases. RSC Advances, 2014, 4, 56424-56433.	3.6	12

DEBASHIS GHOSH

#	Article	IF	CITATIONS
19	Ligandâ€Assisted Electrochemical CO ₂ Reduction by Ruâ€Polypyridyl Complexes. European Journal of Inorganic Chemistry, 2020, 2020, 1814-1818.	2.0	12
20	Base assisted C–C coupling between carbonyl and polypyridyl ligands in a Ru-NADH-type carbonyl complex. Dalton Transactions, 2017, 46, 4373-4381.	3.3	10
21	Four-Electron Reduction of a New Ruthenium Dicarbonyl Complex Having Two NAD Model Ligands through Decarboxylation in Water. Inorganic Chemistry, 2016, 55, 11613-11616.	4.0	9
22	Photochemical H ₂ Evolution Using a Ru–Rh Supramolecular Photocatalyst. Energy & Fuels, 2021, 35, 19069-19080.	5.1	8
23	Synthesis of Unsymmetrical Biheteroarenes <i>via</i> Dehydrogenative and Decarboxylative Coupling: a Decade Update. Chemical Record, 2022, 22, e202100288.	5.8	7
24	Phosphotungstic Acid as an Efficient Catalyst for Allylation of Isatins and <i>N</i> â€ <i>tert</i> â€Butyloxycarbonylamido Sulfones Under Solventâ€Free Conditions. Asian Journal of Organic Chemistry, 2014, 3, 1173-1181.	2.7	6
25	Electrochemical behavior of a Rh(pentamethylcyclopentadienyl) complex bearing an NAD ⁺ /NADH-functionalized ligand. Dalton Transactions, 2018, 47, 5207-5216.	3.3	2
26	Zwitterionic imidazolium salt: an effective green organocatalyst in synthetic chemistry. ChemistrySelect, 2021, .	1.5	0