Taras Y Nazarko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/154381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SQSTM1, lipid droplets and current state of their lipophagy affairs. Autophagy, 2023, 19, 720-723.	4.3	12
2	Komagataella phaffii Cue5 Piggybacks on Lipid Droplets for Its Vacuolar Degradation during Stationary Phase Lipophagy. Cells, 2022, 11, 215.	1.8	8
3	Selective autophagy: the rise of the zebrafish model. Autophagy, 2021, 17, 3297-3305.	4.3	10
4	Lipid Droplets and Their Autophagic Turnover via the Raft-Like Vacuolar Microdomains. International Journal of Molecular Sciences, 2021, 22, 8144.	1.8	13
5	The Molecular Interplay between Human Coronaviruses and Autophagy. Cells, 2021, 10, 2022.	1.8	18
6	Special Issue on "Ubiquitin and Autophagy― Cells, 2021, 10, 116.	1.8	0
7	eIF2Aâ€knockout mice reveal decreased life span and metabolic syndrome. FASEB Journal, 2021, 35, e21990.	0.2	14
8	Nitrogen Starvation and Stationary Phase Lipophagy Have Distinct Molecular Mechanisms. International Journal of Molecular Sciences, 2020, 21, 9094.	1.8	9
9	Pex3 and Atg37 compete to regulate the interaction between the pexophagy receptor, Atg30, and the Hrr25 kinase. Autophagy, 2018, 14, 368-384.	4.3	28
10	Pexophagy is responsible for 65% of cases of peroxisome biogenesis disorders. Autophagy, 2017, 13, 991-994.	4.3	38
11	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
12	Peroxisomal Pex3 Activates Selective Autophagy of Peroxisomes via Interaction with the Pexophagy Receptor Atg30. Journal of Biological Chemistry, 2015, 290, 8623-8631.	1.6	46
13	Atg37 regulates the assembly of the pexophagic receptor protein complex. Autophagy, 2014, 10, 1348-1349.	4.3	29
14	Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. Journal of Cell Biology, 2014, 204, 541-557.	2.3	99
15	Receptor protein complexes are in control of autophagy. Autophagy, 2012, 8, 1701-1705.	4.3	77
16	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
17	Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in <i>Pichia pastoris</i> . Autophagy, 2011, 7, 375-385.	4.3	43
18	Molecular mechanism and physiological role of pexophagy. FEBS Letters, 2010, 584, 1367-1373.	1.3	120

TARAS Y NAZARKO

#	Article	IF	CITATIONS
19	Peroxisome Size Provides Insights into the Function of Autophagy-related Proteins. Molecular Biology of the Cell, 2009, 20, 3828-3839.	0.9	67
20	Chapter 16 Methods of Plate Pexophagy Monitoring and Positive Selection for ATG Gene Cloning in Yeasts. Methods in Enzymology, 2008, 451, 229-239.	0.4	33
21	The Requirement of Sterol Glucoside for Pexophagy in Yeast Is Dependent on the Species and Nature of Peroxisome Inducers. Molecular Biology of the Cell, 2007, 18, 106-118.	0.9	43
22	Autophagy-Related Pathways and Specific Role of Sterol Glucoside in Yeasts. Autophagy, 2007, 3, 263-265.	4.3	15
23	Observation of the peroxisome?vacuole dynamics by fluorescence microscopy with a single filter set. Cell Biology International, 2005, 29, 65-70.	1.4	11
24	Early Secretory Pathway Gene <i>TRS85</i> is Required for Selective Macroautophagy of Peroxisomes in <i>Yarrowia lipolytica</i> . Autophagy, 2005, 1, 37-45.	4.3	66
25	Sterol glucosyltransferases have different functional roles inPichia pastoris and Yarrowia lipolytica. Cell Biology International, 2003, 27, 947-952.	1.4	38
26	Identification of intragenic mutations in the gene that affect peroxisome biogenesis and methylotrophic growth. FEMS Yeast Research, 2003, 4, 141-147.	1.1	2
27	GSH2, a gene encoding γ-glutamylcysteine synthetase in the methylotrophic yeastHansenula polymorpha. FEMS Yeast Research, 2002, 2, 327-332.	1.1	13