Li-Zhi Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1543786/publications.pdf

Version: 2024-02-01

		331670	361022
50	1,277	21	35
papers	citations	h-index	g-index
50	50	50	1056
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Magnetite/Lanthanum hydroxide for phosphate sequestration and recovery from lake and the attenuation effects of sediment particles. Water Research, 2018, 130, 243-254.	11.3	161
2	Single Fe atoms confined in two-dimensional MoS2 for sulfite activation: A biomimetic approach towards efficient radical generation. Applied Catalysis B: Environmental, 2020, 268, 118459.	20.2	86
3	Persulfate activation by two-dimensional MoS2 confining single Fe atoms: Performance, mechanism and DFT calculations. Journal of Hazardous Materials, 2020, 389, 122137.	12.4	72
4	Radical generation via sulfite activation on NiFe2O4 surface for estriol removal: Performance and mechanistic studies. Chemical Engineering Journal, 2019, 368, 495-503.	12.7	68
5	Facile upscaled synthesis of layered iron oxide nanosheets and their application in phosphate removal. Journal of Materials Chemistry A, 2015, 3, 7505-7512.	10.3	65
6	The important role of polyvinylpyrrolidone and Cu on enhancing dechlorination of 2,4-dichlorophenol by Cu/Fe nanoparticles: Performance and mechanism study. Applied Surface Science, 2018, 435, 55-64.	6.1	65
7	Degradation of the Î ² -blocker propranolol by sulfite activation using FeS. Chemical Engineering Journal, 2020, 385, 123884.	12.7	58
8	Glycine buffered synthesis of layered iron(II)-iron(III) hydroxides (green rusts). Journal of Colloid and Interface Science, 2017, 497, 429-438.	9.4	41
9	Phosphorus and nitrogen recovery from wastewater by ceramsite: Adsorption mechanism, plant cultivation and sustainability analysis. Science of the Total Environment, 2022, 805, 150288.	8.0	39
10	Green rusts as a new solution to sequester and stabilize phosphate in sediments under anoxic conditions and their implication for eutrophication control. Chemical Engineering Journal, 2020, 388, 124198.	12.7	38
11	UV-assisted chlorination of algae-laden water: Cell lysis and disinfection byproducts formation. Chemical Engineering Journal, 2020, 383, 123165.	12.7	37
12	Single sheet iron oxide: An efficient heterogeneous electro-Fenton catalyst at neutral pH. Journal of Hazardous Materials, 2019, 364, 39-47.	12.4	35
13	A Silicate/Glycine Switch To Control the Reactivity of Layered Iron(II)–Iron(III) Hydroxides for Dechlorination of Carbon Tetrachloride. Environmental Science & Environmental Science & 2018, 52, 7876-7883.	10.0	30
14	Synergistic effect of humic and fulvic acids on Ni removal by the calcined Mg/Al layered double hydroxide. RSC Advances, 2015, 5, 18866-18874.	3.6	29
15	Electrochemical reduction of nitroaromatic compounds by single sheet iron oxide coated electrodes. Journal of Hazardous Materials, 2016, 306, 175-183.	12.4	29
16	Generation of atomic hydrogen by Ni-Fe hydroxides: Mechanism and activity for hydrodechlorination of trichloroethylene. Water Research, 2021, 207, 117802.	11.3	26
17	Enhanced degradation of Orange II using a novel UV/persulfate/sulfite system. Environmental Chemistry Letters, 2019, 17, 1435-1439.	16.2	25
18	Induced generation of hydroxyl radicals from green rust under oxic conditions by iron-phosphate complexes. Chemical Engineering Journal, 2021, 414, 128780.	12.7	25

#	Article	IF	CITATIONS
19	Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers. European Journal of Inorganic Chemistry, 2013, 2013, 5718-5727.	2.0	24
20	Hierarchical MoS ₂ nanosheets on flexible carbon felt as an efficient flow-through electrode for dechlorination. Environmental Science: Nano, 2017, 4, 2286-2296.	4.3	23
21	Prolonged persulfate activation by UV irradiation of green rust for the degradation of organic pollutants. Environmental Chemistry Letters, 2019, 17, 1017-1021.	16.2	22
22	Enhanced debromination of tetrabromobisphoenol a by zero-valent copper-nanoparticle-modified green rusts. Environmental Science: Nano, 2019, 6, 970-980.	4.3	20
23	Electrochemical reductive remediation of trichloroethylene contaminated groundwater using biomimetic iron-nitrogen-doped carbon. Journal of Hazardous Materials, 2021, 419, 126458.	12.4	20
24	A one-step delamination procedure to form single sheet iron(iii)-(oxy)hydroxides. Journal of Materials Chemistry A, 2013, 1, 13664.	10.3	19
25	Graphene oxide-mediated rapid dechlorination of carbon tetrachloride by green rust. Journal of Hazardous Materials, 2017, 323, 690-697.	12.4	19
26	Copper-mediated reductive dechlorination by green rust intercalated with dodecanoate. Journal of Hazardous Materials, 2018, 345, 18-26.	12.4	19
27	Stabilized green rusts for aqueous Cr(VI) removal: Fast kinetics, high iron utilization rate and anti-acidification. Chemosphere, 2021, 262, 127853.	8.2	19
28	Enhanced reactivity and mechanisms of copper nanoparticles modified green rust for p-nitrophenol reduction. Environment International, 2019, 129, 299-307.	10.0	18
29	Copper nanoparticles/graphene modified green rusts for debromination of tetrabromobisphenol A: Enhanced galvanic effect, electron transfer and adsorption. Science of the Total Environment, 2019, 683, 275-283.	8.0	17
30	Self-activated Ni(OH)2 cathode for complete electrochemical reduction of trichloroethylene to ethane in low-conductivity groundwater. Applied Catalysis B: Environmental, 2022, 309, 121258.	20.2	15
31	Transformation of roxarsone during UV disinfection in the presence of ferric ions. Chemosphere, 2019, 233, 431-439.	8.2	13
32	Hydroxyl groups bridge the electron transfer from Fe(II) to carbon tetrachloride. Water Research, 2022, 221, 118791.	11.3	13
33	Effect of structural properties of green rusts on phosphate fixation and implication for eutrophication remediation. Separation and Purification Technology, 2021, 274, 119023.	7.9	11
34	Removal of phosphorus in municipal landfill leachate by photochemical oxidation combined with ferrate pre-treatment. Desalination and Water Treatment, 2010, 22, 111-116.	1.0	10
35	One-time removal of Cr(VI) and carbon tetrachloride from groundwater by silicate stabilized green rust: The slow release of reactive sites driven by Fe(III)-Cr(III) oxides formation. Chemical Engineering Journal, 2022, 433, 134462.	12.7	9
36	Reconsidering the use of ferrous hydroxide for remediation of chlorinated ethylene contaminated groundwater: Ultra-fast trichloroethene dechlorination by ferrous hydroxide and bone char mixture. Chemical Engineering Journal, 2022, 438, 135516.	12.7	9

#	Article	IF	CITATIONS
37	Pyridinic nitrogen enables dechlorination of trichloroethylene to acetylene by green rust: Performance, mechanism and applications. Science of the Total Environment, 2022, 824, 153825.	8.0	8
38	Single sheet iron oxide based films: electrochemical properties with in situ UV-vis measurement. Journal of Materials Chemistry A, 2014, 2, 4029.	10.3	6
39	Energy-harvesting bio-electro-dehalogenation for sustainable wastewater treatment. Electrochimica Acta, 2018, 290, 38-45.	5. 2	6
40	Fast removal of trichloroethene from groundwater using surfactant amended bone char and green rusts mixture: Mechanism of surface interface interaction. Applied Clay Science, 2022, 219, 106440.	5.2	5
41	Interaction between green rust and tribromophenol under anoxic, oxic and anoxic-to-oxic conditions: Adsorption, desorption and oxidative degradation. Water Research, 2022, 217, 118398.	11.3	5
42	Photocatalytic Degradation of Orange II in Aqueous Iron-Rich Montmorillonite Solutions. Journal of Environmental Engineering, ASCE, 2010, 136, 152-158.	1.4	4
43	The redox chemistry of phosphate complexed green rusts: Limited oxidative transformation and phosphate release. Chemical Engineering Journal, 2022, 429, 132417.	12.7	4
44	Fast dechlorination of trichloroethylene by a bimetallic Fe(OH)2/Ni composite. Separation and Purification Technology, 2021, 278, 119597.	7.9	4
45	Synthesis and Reactivity of Surfactant-intercalated Layered Iron(II)Iron(III) Hydroxides. Current Inorganic Chemistry, 2016, 6, 68-82.	0.2	4
46	Studies on Treating the Printing and Dyeing Wastewater with the Ferrate Oxidization and Photochemical Process., 2008,,.		1
47	PHOTOCATALYSIS BY IRON-RICH MONTMORILLONITE FOR THE TREATMENT OF DYEING WASTEWATER. Chemical Engineering Communications, 2010, 197, 1048-1056.	2.6	1
48	Treatment of Landfill Leachate by Combined Photooxidation and Biological Anaerobic-Aerobic Method. , 2009, , .		0
49	Photocatalytic decolourization of the X3B textile dye in aqueous solutions using iron-rich montmorilloniteA paper submitted to the Journal of Environmental Engineering and Science Canadian Journal of Civil Engineering, 2009, 36, 1265-1271.	1.3	0
50	Coordinatively Unsaturated Reduced Iron Sites Enable Hemin-Catalyzed Electrochemical Dechlorination of Trichloroethylene. Journal of Environmental Engineering, ASCE, 2022, 148, .	1.4	0