
Per Johan Klasse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1543668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but Not Non-Neutralizing Antibodies. PLoS Pathogens, 2013, 9, e1003618.	2.1	835
2	HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science, 2015, 349, aac4223.	6.0	482
3	Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes. Cell, 2015, 163, 1702-1715.	13.5	341
4	A Native-Like SOSIP.664 Trimer Based on an HIV-1 Subtype B <i>env</i> Gene. Journal of Virology, 2015, 89, 3380-3395.	1.5	247
5	Limited or no protection by weakly or nonneutralizing antibodies against vaginal SHIV challenge of macaques compared with a strongly neutralizing antibody. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11181-11186.	3.3	243
6	A Broadly Neutralizing Antibody Targets the Dynamic HIV Envelope Trimer Apex via a Long, Rigidified, and Anionic β-Hairpin Structure. Immunity, 2017, 46, 690-702.	6.6	216
7	Neutralization of Virus Infectivity by Antibodies: Old Problems in New Perspectives. Advances in Biology, 2014, 2014, 1-24.	1.2	194
8	Antiretroviral Drug–Based Microbicides to Prevent HIV-1 Sexual Transmission. Annual Review of Medicine, 2008, 59, 455-471.	5.0	176
9	Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization. Cell Reports, 2017, 20, 1805-1817.	2.9	171
10	Association of Age With SARS-CoV-2 Antibody Response. JAMA Network Open, 2021, 4, e214302.	2.8	159
11	Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo. Journal of Experimental Medicine, 2017, 214, 2573-2590.	4.2	151
12	Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. Nature Communications, 2019, 10, 4272.	5.8	149
13	Murine Antibody Responses to Cleaved Soluble HIV-1 Envelope Trimers Are Highly Restricted in Specificity. Journal of Virology, 2015, 89, 10383-10398.	1.5	148
14	An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. Nature Microbiology, 2017, 2, 16199.	5.9	144
15	Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits. Retrovirology, 2014, 11, 41.	0.9	139
16	Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope Clycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS Pathogens, 2016, 12, e1005864.	2.1	138
17	Design and structure of two HIV-1 clade C SOSIP.664 trimers that increase the arsenal of native-like Env immunogens. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11947-11952.	3.3	127
18	Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. ELife, 2020, 9, .	2.8	123

PER JOHAN KLASSE

#	Article	IF	CITATIONS
19	The molecular basis of < scp>HIV < /scp>entry. Cellular Microbiology, 2012, 14, 1183-1192.	1.1	113
20	Antibody Responses to SARS-CoV-2 mRNA Vaccines Are Detectable in Saliva. Pathogens and Immunity, 2021, 6, 116-134.	1.4	112
21	Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques. PLoS Pathogens, 2018, 14, e1006913.	2.1	111
22	Immunogenicity of clinically relevant SARS-CoV-2 vaccines in nonhuman primates and humans. Science Advances, 2021, 7, .	4.7	100
23	Influences on the Design and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers. Journal of Virology, 2015, 89, 12189-12210.	1.5	88
24	Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike. Nature Communications, 2015, 6, 8167.	5.8	87
25	Antibodies to SARS-CoV-2 and their potential for therapeutic passive immunization. ELife, 2020, 9, .	2.8	80
26	Is there enough gp120 in the body fluids of HIV-1-infected individuals to have biologically significant effects?. Virology, 2004, 323, 1-8.	1.1	79
27	COVID-19 Vaccines: "Warp Speed―Needs Mind Melds, Not Warped Minds. Journal of Virology, 2020, 94, .	1.5	79
28	Modeling how many envelope glycoprotein trimers per virion participate in human immunodeficiency virus infectivity and its neutralization by antibody. Virology, 2007, 369, 245-262.	1.1	77
29	Influences on Trimerization and Aggregation of Soluble, Cleaved HIV-1 SOSIP Envelope Glycoprotein. Journal of Virology, 2013, 87, 9873-9885.	1.5	76
30	How Can HIV-Type-1-Env Immunogenicity Be Improved to Facilitate Antibody-Based Vaccine Development?. AIDS Research and Human Retroviruses, 2012, 28, 1-15.	0.5	69
31	Molecular Determinants of the Ratio of Inert to Infectious Virus Particles. Progress in Molecular Biology and Translational Science, 2015, 129, 285-326.	0.9	66
32	Immunogenicity in Rabbits of HIV-1 SOSIP Trimers from Clades A, B, and C, Given Individually, Sequentially, or in Combination. Journal of Virology, 2018, 92, .	1.5	66
33	Closing and Opening Holes in the Glycan Shield of HIV-1 Envelope Glycoprotein SOSIP Trimers Can Redirect the Neutralizing Antibody Response to the Newly Unmasked Epitopes. Journal of Virology, 2019, 93, .	1.5	66
34	Which Topical Microbicides for Blocking HIV-1 Transmission Will Work in the Real World?. PLoS Medicine, 2006, 3, e351.	3.9	63
35	Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-Like HIV-1 Env SOSIP Trimers. Journal of Virology, 2017, 91, .	1.5	57
36	Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens. PLoS Pathogens, 2020, 16, e1008665.	2.1	52

PER JOHAN KLASSE

#	Article	IF	CITATIONS
37	How to assess the binding strength of antibodies elicited by vaccination against HIV and other viruses. Expert Review of Vaccines, 2016, 15, 295-311.	2.0	48
38	Stable 293ÂT and CHO cell lines expressing cleaved, stable HIV-1 envelope glycoprotein trimers for structural and vaccine studies. Retrovirology, 2014, 11, 33.	0.9	46
39	A STEP into Darkness or Light?. Science, 2008, 320, 753-755.	6.0	45
40	Binding of inferred germline precursors of broadly neutralizing HIV-1 antibodies to native-like envelope trimers. Virology, 2015, 486, 116-120.	1.1	42
41	Env Exceptionalism: Why Are HIV-1 Env Glycoproteins Atypical Immunogens?. Cell Host and Microbe, 2020, 27, 507-518.	5.1	42
42	How Do Viral and Host Factors Modulate the Sexual Transmission of HIV? Can Transmission Be Blocked?. PLoS Medicine, 2006, 3, e79.	3.9	40
43	Enhancing glycan occupancy of soluble HIV-1 envelope trimers to mimic the native viral spike. Cell Reports, 2021, 35, 108933.	2.9	37
44	Effects of Adjuvants on HIV-1 Envelope Glycoprotein SOSIP Trimers <i>In Vitro</i> . Journal of Virology, 2018, 92, .	1.5	34
45	Immunofocusing and enhancing autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein nanoparticles. Npj Vaccines, 2021, 6, 24.	2.9	33
46	Neutralizing Antibody Induction by HIV-1 Envelope Glycoprotein SOSIP Trimers on Iron Oxide Nanoparticles May Be Impaired by Mannose Binding Lectin. Journal of Virology, 2020, 94, .	1.5	29
47	Quantitative Correlation between Infectivity and Gp120 Density on HIV-1 Virions Revealed by Optical Trapping Virometry. Journal of Biological Chemistry, 2016, 291, 13088-13097.	1.6	28
48	Improving the Expression and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers by Targeted Sequence Changes. Journal of Virology, 2017, 91, .	1.5	27
49	What Do Chaotrope-Based Avidity Assays for Antibodies to HIV-1 Envelope Glycoproteins Measure?. Journal of Virology, 2015, 89, 5981-5995.	1.5	25
50	High-Throughput Protein Engineering Improves the Antigenicity and Stability of Soluble HIV-1 Envelope Glycoprotein SOSIP Trimers. Journal of Virology, 2017, 91, .	1.5	22
51	Postconvalescent SARS-CoV-2 IgG and Neutralizing Antibodies are Elevated in Individuals with Poor Metabolic Health. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e2025-e2034.	1.8	22
52	Testing-on-a-probe biosensors reveal association of early SARS-CoV-2 total antibodies and surrogate neutralizing antibodies with mortality in COVID-19 patients. Biosensors and Bioelectronics, 2021, 178, 113008.	5.3	21
53	Antibodies to West Nile Virus: A Double-Edged Sword. Cell Host and Microbe, 2007, 1, 87-89.	5.1	19
54	HIV-1 Escape from a Peptidic Anchor Inhibitor through Stabilization of the Envelope Glycoprotein Spike. Journal of Virology, 2016, 90, 10587-10599.	1.5	18

Per Johan Klasse

#	Article	IF	CITATIONS
55	Optimizing the production and affinity purification of HIV-1 envelope glycoprotein SOSIP trimers from transiently transfected CHO cells. PLoS ONE, 2019, 14, e0215106.	1.1	18
56	High-resolution mapping of the neutralizing and binding specificities of polyclonal sera post-HIV Env trimer vaccination. ELife, 2021, 10, .	2.8	15
57	Short Communication: Virion Aggregation by Neutralizing and Nonneutralizing Antibodies to the HIV-1 Envelope Glycoprotein. AIDS Research and Human Retroviruses, 2015, 31, 1160-1165.	0.5	14
58	Good CoP, bad CoP? Interrogating the immune responses to primate lentiviral vaccines. Retrovirology, 2012, 9, 80.	0.9	13
59	Predicting First Traversal Times for Virions and Nanoparticles in Mucus with Slowed Diffusion. Biophysical Journal, 2015, 109, 164-172.	0.2	13
60	The Glycan Hole Area of HIV-1 Envelope Trimers Contributes Prominently to the Induction of Autologous Neutralization. Journal of Virology, 2022, 96, JVI0155221.	1.5	13
61	Antibody Responses Elicited by Immunization with BG505 Trimer Immune Complexes. Journal of Virology, 2019, 93, .	1.5	12
62	TOP-Plus Is a Versatile Biosensor Platform for Monitoring SARS-CoV-2 Antibody Durability. Clinical Chemistry, 2021, 67, 1249-1258.	1.5	12
63	Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers. Journal of Virology, 2020, 94, .	1.5	11
64	Recognition of HIV-inactivating peptide triazoles by the recombinant soluble Env trimer, BG505 SOSIP.664. Proteins: Structure, Function and Bioinformatics, 2017, 85, 843-851.	1.5	7
65	Reappraising the Value of HIV-1 Vaccine Correlates of Protection Analyses. Journal of Virology, 2022, , e0003422.	1.5	7
66	Antibodies from Rabbits Immunized with HIV-1 Clade B SOSIP Trimers Can Neutralize Multiple Clade B Viruses by Destabilizing the Envelope Glycoprotein. Journal of Virology, 2021, 95, e0009421.	1.5	5
67	A New Bundle of Prospects for Blocking HIV-1 Entry. Science, 2013, 341, 1347-1348.	6.0	4
68	SOS and IP Modifications Predominantly Affect the Yield but Not Other Properties of SOSIP.664 HIV-1 Env Glycoprotein Trimers. Journal of Virology, 2019, 94, .	1.5	4
69	Measurements of SARS-CoV-2 antibody dissociation rate constant by chaotrope-free biolayer interferometry in serum of COVID-19 convalescent patients. Biosensors and Bioelectronics, 2022, 209, 114237.	5.3	4
70	Collusion between neutralizing antibodies and other immune factions in the destruction of adenoviral vectors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10201-10203.	3.3	3
71	Non-cognate ligands of Procrustean paratopes as potential vaccine components. EBioMedicine, 2019, 47, 6-7.	2.7	2
72	Preface. Progress in Molecular Biology and Translational Science, 2015, 129, xv-xix.	0.9	0

5

#	Article	IF	CITATIONS
73	Seminal analyses of HIV-1 transmission. EBioMedicine, 2020, 57, 102871.	2.7	0
74	Title is missing!. , 2020, 16, e1008665.		0
75	Title is missing!. , 2020, 16, e1008665.		Ο
76	Title is missing!. , 2020, 16, e1008665.		0
77	Title is missing!. , 2020, 16, e1008665.		0