
Michael R Olin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/154340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systemic Delivery of an Adjuvant CXCR4–CXCL12 Signaling Inhibitor Encapsulated in Synthetic Protein Nanoparticles for Glioma Immunotherapy. ACS Nano, 2022, 16, 8729-8750.	14.6	43
2	CD200 Immune-Checkpoint Peptide Elicits an Anti-glioma Response Through the DAP10 Signaling Pathway. Neurotherapeutics, 2021, 18, 1980-1994.	4.4	6
3	Targeting Neuroinflammation in Brain Cancer: Uncovering Mechanisms, Pharmacological Targets, and Neuropharmaceutical Developments. Frontiers in Pharmacology, 2021, 12, 680021.	3.5	33
4	CD200 Checkpoint Reversal: A Novel Approach to Immunotherapy. Clinical Cancer Research, 2020, 26, 232-241.	7.0	25
5	Treatment Combining CD200 Immune Checkpoint Inhibitor and Tumor-Lysate Vaccination after Surgery for Pet Dogs with High-Grade Glioma. Cancers, 2019, 11, 137.	3.7	28
6	Tumor-derived exosomes, microRNAs, and cancer immune suppression. Seminars in Immunopathology, 2018, 40, 505-515.	6.1	69
7	Design and Synthesis of N1-Modified Imidazoquinoline Agonists for Selective Activation of Toll-like Receptors 7 and 8. ACS Medicinal Chemistry Letters, 2017, 8, 1148-1152.	2.8	32
8	Tumor-derived vaccines containing CD200 inhibit immune activation: implications for immunotherapy. Immunotherapy, 2016, 8, 1059-1071.	2.0	20
9	Monomeric annexin A2 is an oxygen-regulated toll-like receptor 2 ligand and adjuvant. , 2016, 4, 11.		20
10	CD8+ T Cell-Independent Immune-Mediated Mechanisms of Anti-Tumor Activity. Critical Reviews in Immunology, 2015, 35, 153-172.	0.5	32
11	CD200 in CNS tumor-induced immunosuppression: the role for CD200 pathway blockade in targeted immunotherapy. , 2014, 2, 46.		52
12	Vaccination with dendritic cells loaded with allogeneic brain tumor cells for recurrent malignant brain tumors induces a CD4+IL17+ response. , 2014, 2, 4.		38
13	Morphine Induces Splenocyte Trafficking into the CNS. Journal of NeuroImmune Pharmacology, 2012, 7, 436-443.	4.1	13
14	Morphine Alters M. bovis Infected Microglia's Ability to Activate γδT Lymphocytes. Journal of NeuroImmune Pharmacology, 2011, 6, 578-584.	4.1	7
15	Oxygen Is a Master Regulator of the Immunogenicity of Primary Human Glioma Cells. Cancer Research, 2011, 71, 6583-6589.	0.9	20
16	In Vivo Morphine Treatment Synergistically Increases LPS-Induced Caspase Activity in Immune Organs. Journal of NeuroImmune Pharmacology, 2010, 5, 546-552.	4.1	6
17	Superior Efficacy of Tumor Cell Vaccines Grown in Physiologic Oxygen. Clinical Cancer Research, 2010, 16, 4800-4808.	7.0	30
18	In Vitro and In Vivo Apoptosis Detection Using Membrane Permeant Fluorescent-Labeled Inhibitors of Caspases. , 2008, 414, 109-135.		29

MICHAEL R OLIN

#	Article	IF	CITATIONS
19	Role of Nitric Oxide in Defense of the Central Nervous System against <i>Mycobacterium tuberculosis</i> . Journal of Infectious Diseases, 2008, 198, 886-889.	4.0	11
20	Use of a Fluorescently Labeled Poly-Caspase Inhibitor for <i>in Vivo</i> Detection of Apoptosis Related to Vascular-Targeting Agent Arsenic Trioxide for Cancer Therapy. Technology in Cancer Research and Treatment, 2007, 6, 651-654.	1.9	26
21	Morphine modulates γδlymphocytes cytolytic activity following BCG vaccination. Brain, Behavior, and Immunity, 2007, 21, 195-201.	4.1	10
22	γδT-lymphocyte cytotoxic activity against Mycobacterium bovis analyzed by flow cytometry. Journal of Immunological Methods, 2005, 297, 1-11.	1.4	33
23	Î ³ δLymphocyte Response to Porcine Reproductive and Respiratory Syndrome Virus. Viral Immunology, 2005, 18, 490-499.	1.3	40
24	γδT Cells in Immunity Induced by Mycobacterium bovis Bacillus Calmette-GueÌrin Vaccination. Infection and Immunity, 2004, 72, 1504-1511.	2.2	58