Mi-Lin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1542686/publications.pdf

Version: 2024-02-01

170 papers

4,114 citations

147801 31 h-index 56 g-index

172 all docs

 $\begin{array}{c} 172 \\ \\ \text{docs citations} \end{array}$

172 times ranked

4069 citing authors

#	Article	IF	CITATIONS
1	Electrochemical co-reduction of holmium and magnesium ions in eutectic LiCl–KCl salts. Rare Metals, 2022, 41, 1394-1402.	7.1	8
2	Molten salt oxidation and process analysis of anionic exchange resin in Na ₂ CO ₃ -K ₂ CO ₃ melt. Journal of Nuclear Science and Technology, 2022, 59, 597-604.	1.3	7
3	MOF-derived electrochemical catalyst Cu–N/C for the enhancement of amperometric oxygen detection. Nanoscale, 2022, 14, 1796-1806.	5.6	8
4	Molten salt/liquid metal extraction: Electrochemical behaviors and thermodynamics properties of La, Pr, U and separation factors of La/U and Pr/U couples in liquid gallium cathode. Applied Radiation and Isotopes, 2022, 182, 110149.	1.5	3
5	Electrochemical extraction of ytterbium from LiCl–KCl-YbCl3-ZnCl2 melt by forming Zn–Yb alloys. Journal of Solid State Electrochemistry, 2022, 26, 1067-1074.	2.5	4
6	Electrochemical preparation and properties of a Mg–Li–Y alloy via co-reduction of Mg(ii) and Y(iii) in chloride melts. RSC Advances, 2021, 11, 13839-13847.	3.6	4
7	Recovery and separation of rare earth elements by molten salt electrolysis. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 899-914.	4.9	25
8	$\hat{l}\pm\hat{a}$ Fe2O3/rGO cooperated with tri-alkyl-substituted-imidazolium ionic liquids for enhancing oxygen sensing. Sensors and Actuators B: Chemical, 2021, 341, 130029.	7.8	3
9	A chitosan-graphene oxide/ZIF foam with anti-biofouling ability for uranium recovery from seawater. Chemical Engineering Journal, 2020, 382, 122850.	12.7	117
10	Microstructure and Mechanical Properties of Mg–14Li–3Al–2Gd Alloy Processed by Multilayer Accumulative Roll Bonding. Advanced Engineering Materials, 2020, 22, 1900774.	3.5	6
11	Water-locking molecule-assisted fabrication of nature-inspired Mg(OH) ₂ for highly efficient and economical uranium capture. Dalton Transactions, 2020, 49, 7535-7545.	3.3	8
12	Enhanced Electromagnetic Interference Shielding in a Duplex-Phase Mg–9Li–3Al–1Zn Alloy Processed by Accumulative Roll Bonding. Acta Metallurgica Sinica (English Letters), 2020, 33, 490-499.	2.9	83
13	Electrochemical recovery of dysprosium from LiCl-KCl melt aided by liquid Pb metal. Separation and Purification Technology, 2020, 250, 117124.	7.9	22
14	Electrode reaction of Pr(III) and coreduction of Pr(III) and Pb(II) on W electrode in eutectic LiCl-KCl. lonics, 2020, 26, 3901-3909.	2.4	10
15	Ag-CS Enhanced Performance of Pyrrolidone-Based Ionic Liquid Oxygen Sensor. Journal of the Electrochemical Society, 2020, 167, 067522.	2.9	3
16	Electrochemical behavior and underpotential deposition of Sm on reactive electrodes (Al, Ni, Cu and) Tj ETQq0 0	0 rgBT /C	overlock 10 Tf
17	A hybrid sponge with guanidine and phytic acid enriched surface for integration of antibiofouling and uranium uptake from seawater. Applied Surface Science, 2020, 525, 146611.	6.1	18
18	Theoretical investigation of lanthanide and transition metal on Al cathode: Equilibrium potential and atomic radii analysis by a mathematical equation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 590, 124490.	4.7	3

#	Article	IF	CITATIONS
19	Quantitative Description of the Equilibrium Potentials and Atomic Radius of the Co–Ln Alloy by a Mathematical Equation. Journal of the Electrochemical Society, 2020, 167, 122502.	2.9	1
20	The equilibrium potentials of Ni–Ln alloys over the whole composition range in the phase diagram: experiment and prediction. New Journal of Chemistry, 2020, 44, 18686-18693.	2.8	0
21	In Situ Anchoring of Pyrrhotite on Graphitic Carbon Nitride Nanosheet for Efficient Immobilization of Uranium. Chemistry - A European Journal, 2019, 25, 590-597.	3.3	11
22	Effect of Annealing Temperature on the Microstructure and Mechanical Properties of the Al/Mg–8Li–3Al–1Zn/Al Composite Plates Fabricated by Hot Rolling. Physics of Metals and Metallography, 2019, 120, 447-453.	1.0	2
23	Electrochemical properties of yttrium on W and Pb electrodes in LiCl–KCl eutectic melts. RSC Advances, 2019, 9, 26718-26728.	3.6	19
24	A Study on the Periodic Rule of Reduction Potentials of Lanthanides on Liquid Zinc Electrode. Journal of the Electrochemical Society, 2019, 166, D689-D693.	2.9	3
25	Extraction of neodymium from other fission products by coâ€reduction of Sn and Nd. Applied Organometallic Chemistry, 2019, 33, e4802.	3.5	8
26	Electrochemical Co-reduction of Bi(III) and Y(III) and Extracting Yttrium from Molten LiCl-KCl Using Liquid Bi as Cathode. Chemical Research in Chinese Universities, 2019, 35, 60-64.	2.6	7
27	Hydrothermal Synthesis of Protective Coating on Mg Alloy for Degradable Implant Applications. Coatings, 2019, 9, 160.	2.6	11
28	Effects of Annealing on the Microstructures and Mechanical Properties of Cold-Rolled TB8 Alloy. Journal of Materials Engineering and Performance, 2019, 28, 2816-2825.	2.5	2
29	Effects of Cold Rolling on Microstructural Evolution and Mechanical Properties of Mg–14Li–1Zn Alloy. Advanced Engineering Materials, 2019, 21, 1801344.	3.5	10
30	Graphene Oxide and Silver Ions Coassisted Zeolitic Imidazolate Framework for Antifouling and Uranium Enrichment from Seawater. ACS Sustainable Chemistry and Engineering, 2019, 7, 6185-6195.	6.7	73
31	An anti-algae adsorbent for uranium extraction: l-Arginine functionalized graphene hydrogel loaded with Ag nanoparticles. Journal of Colloid and Interface Science, 2019, 543, 192-200.	9.4	27
32	Controllable Preparation of Carbon Materials with Different Morphologies Assisted by Molten Salt Electrolysis. ECS Journal of Solid State Science and Technology, 2019, 8, M122-M127.	1.8	3
33	Electrochemical Synthesis and Thermodynamic Properties of Prâ€Ni Intermetallic Compounds in a LiClâ€KClâ€NiCl ₂ â€PrCl ₃ Melt. ChemElectroChem, 2019, 6, 876-884.	3.4	6
34	Selective formation of Ce-Ni hydrogen storage alloys by electro-deposition in LiCl-KCl-CeCl3 melts using Ni as cathode. Journal of Alloys and Compounds, 2019, 777, 1211-1221.	5 . 5	13
35	Fabrication of Al-Coated Mg–Li Alloy Sheet and Investigation of Its Properties. Acta Metallurgica Sinica (English Letters), 2019, 32, 169-177.	2.9	13
36	Synthesis and characterization of [Cu(N-Melm)4(BF4)2] in ionic liquid. Chemical Research in Chinese Universities, 2018, 34, 8-12.	2.6	6

#	Article	IF	Citations
37	Electrolytic extraction of dysprosium and thermodynamic evaluation of Cu–Dy intermetallic compound in eutectic LiCl–KCl. RSC Advances, 2018, 8, 8118-8129.	3.6	17
38	$Rapid\ Production\ of\ Ln < sub > 2 < /sub > O < sub > 2 < /sub > S: Eu < sup > 3 + < /sup > /Tb < sup > 3 + < /sup > (Ln = Sm, La,)\ Tj\ ET < Sup > 1 + (Sup > 1) + (Sup > $	Qq0,00r;	gBŢ/Overlock
39	Electrochemical co-reduction of Y(III) and Zn(II) and extraction of yttrium on Zn electrode in LiCl-KCl eutectic melts. Journal of Solid State Electrochemistry, 2018, 22, 2435-2444.	2.5	24
40	Efficient removal of U(<scp>vi</scp>) from simulated seawater with hyperbranched polyethylenimine (HPEI) covalently modified SiO ₂ coated magnetic microspheres. Inorganic Chemistry Frontiers, 2018, 5, 1321-1328.	6.0	39
41	Microstructure and Hardness of Mg $\hat{a}\in$ 9Li $\hat{a}\in$ 6Al Alloy After Different Variants of Solid Solution Treatment. Metal Science and Heat Treatment, 2018, 59, 761-766.	0.6	3
42	Synthesis and characterization of phosphorized polyaniline doped with phytic acid and its anticorrosion properties for Mg-Li alloy. Journal of Macromolecular Science - Pure and Applied Chemistry, 2018, 55, 24-35.	2.2	18
43	Electrochemical behaviour of magnesium(II) on Ni electrode in LiCl-KCl eutectic. Chemical Research in Chinese Universities, 2018, 34, 107-112.	2.6	5
44	High efficiency extraction of U(VI) from seawater by incorporation of polyethyleneimine, polyacrylic acid hydrogel and Luffa cylindrical fibers. Chemical Engineering Journal, 2018, 345, 526-535.	12.7	71
45	Synergistic effect of carbon nanotube and graphene nanoplatelet addition on microstructure and mechanical properties of AZ31 prepared using hot-pressing sintering. Journal of Materials Research, 2018, 33, 4261-4269.	2.6	11
46	Electrochemical Oxygen Sensor Based on the Interaction of Double-Layer Ionic Liquid Film (DLILF). Journal of the Electrochemical Society, 2018, 165, B779-B786.	2.9	11
47	Effect of Minor Er on the Microstructure and Properties of Al-6.0Mg-0.4Mn-0.1Cr-0.1Zr Alloys. Journal of Materials Engineering and Performance, 2018, 27, 5709-5717.	2.5	5
48	Recovery of Terbium from LiCl-KCl-TbCl ₃ System by Electrodeposition Using Different Electrodes. Journal of the Electrochemical Society, 2018, 165, D704-D710.	2.9	8
49	The kinetics process of a Pb(<scp>ii</scp>)/Pb(0) couple and selective fabrication of Li–Pb alloys in LiCl–KCl melts. RSC Advances, 2018, 8, 30530-30538.	3.6	14
50	The linear relationship derived from the deposition potential of Pb–Ln alloy and atomic radius. New Journal of Chemistry, 2018, 42, 16533-16541.	2.8	3
51	Hierarchical Ni–Al Layered Double Hydroxide In Situ Anchored onto Polyethylenimine-Functionalized Fibers for Efficient U(VI) Capture. ACS Sustainable Chemistry and Engineering, 2018, 6, 13385-13394.	6.7	45
52	Novel Ion-Imprinted Carbon Material Induced by Hyperaccumulation Pathway for the Selective Capture of Uranium. ACS Applied Materials & D. Interfaces, 2018, 10, 28877-28886.	8.0	45
53	New formulation for reduction potentials of (Cu, Ni, Al, Zn)–lanthanide alloys – Implications for electrolysis-based pyroprocessing of spent nuclear fuel. Electrochemistry Communications, 2018, 93, 180-182.	4.7	5
54	Polypyrrole modified Fe ⁰ -loaded graphene oxide for the enrichment of uranium(<scp>vi</scp>) from simulated seawater. Dalton Transactions, 2018, 47, 12984-12992.	3.3	20

#	Article	IF	Citations
55	Electrochemical deposition of praseodymium (III) and copper (II) and extraction of praseodymium on copper electrode in LiCl-KCl melts. Journal of Solid State Electrochemistry, 2018, 22, 3689-3702.	2.5	11
56	Superhydrophilic phosphate and amide functionalized magnetic adsorbent: a new combination of anti-biofouling and uranium extraction from seawater. Environmental Science: Nano, 2018, 5, 2346-2356.	4.3	44
57	Electrochemical behaviour of erbium(III) and its extraction on Cu electrode in LiCl-KCl melts. Journal of Alloys and Compounds, 2017, 695, 3484-3494.	5.5	30
58	Electrochemical behavior of Y(III) and preparation of Y-Ni intermetallic compounds in molten LiCl-KCl salts. Journal of Rare Earths, 2017, 35, 90-97.	4.8	24
59	Uniformly Dispersed ZnFe2O4 Nanoparticles on Nitrogen-Modified Graphene for High-Performance Supercapacitor as Electrode. Scientific Reports, 2017, 7, 43116.	3.3	98
60	Microstructure, Texture, and Mechanical Properties of Alternate ⟨i⟩α⟨ i⟩ ⟨i⟩β⟨ i⟩ Mg–Li Composite Sheets Prepared by Accumulative Roll Bonding. Advanced Engineering Materials, 2017, 19, 1600817.	3.5	15
61	Electrochemical Extraction of Praseodymium by Formation of Zn-Pr Alloy in LiCl-KCl Melts with the Assistance of ZnCl ₂ and Liquid Zn. Journal of the Electrochemical Society, 2017, 164, D253-D262.	2.9	6
62	Electrochemical Extraction of Holmium and Thermodynamic Properties of Ho-Bi Alloys in LiCl-KCl Eutectic. Journal of the Electrochemical Society, 2017, 164, E62-E70.	2.9	31
63	Electrochemical formation and thermodynamic evaluation of Pr-Zn intermetallic compounds in LiCl-KCl eutectic melts. Electrochimica Acta, 2017, 228, 299-307.	5.2	28
64	Electrochemical formation and thermodynamic properties of Tb–Bi intermetallic compounds in eutectic LiCl–KCl. RSC Advances, 2017, 7, 31682-31690.	3.6	15
65	Electrochemical Synthesis Quaternary Mgâ^'Liâ^'Alâ^'Pr Alloy with and without Whisker on Magnesium Cathode in LiClâ^'KClâ^'PrCl ₃ â^'AlCl ₃ Melts. Journal of the Electrochemical Society, 2017, 164, D429-D435.	2.9	5
66	Thermodynamic and Electrochemical Properties of Praseodymium and the Formation of Ni-Pr Intermetallics in LiCl-KCl Melts. Journal of the Electrochemical Society, 2017, 164, D835-D842.	2.9	14
67	Microstructure and Mechanical Properties of CNT-Reinforced AZ31 Matrix Composites Prepared Using Hot-Press Sintering. Journal of Materials Engineering and Performance, 2017, 26, 5495-5500.	2.5	21
68	Microstructure and Mechanical Properties of Mg-8Li- $(0, 1, 2)$ Ca- $(0, 2)$ Gd Alloys. Journal of Materials Engineering and Performance, 2017, 26, 4831-4837.	2.5	7
69	Thermal Stability, Combustion Behavior, and Mechanical Property in a Flame-Retardant Polypropylene System. Applied Sciences (Switzerland), 2017, 7, 55.	2.5	12
70	Thermal Analysis and Flame-Retarded Mechanism of Composites Composed of Ethylene Vinyl Acetate and Layered Double Hydroxides Containing Transition Metals (Mn, Co, Cu, Zn). Applied Sciences (Switzerland), 2016, 6, 131.	2.5	14
71	Preparation of Fineâ€Grained and Highâ€Strength Mg–8Li–3Al–1Zn Alloy by Accumulative Roll Bonding. Advanced Engineering Materials, 2016, 18, 304-311.	3.5	40
72	Hydrothermal syntheses of CuO, CuO/Cu2O, Cu2O, Cu2O/Cu and Cu microcrystals using ionic liquids. Chemical Research in Chinese Universities, 2016, 32, 530-533.	2.6	8

#	Article	IF	Citations
73	Influence of Nd and Y on texture of as-extruded Mg–5Li–3Al–2Zn alloy. Physics of Metals and Metallography, 2016, 117, 735-741.	1.0	5
74	Influence of Annealing Temperature on the Microstructure and Mechanical Properties of Al/Mg/Al Composite Sheets Fabricated by Roll Bonding. Advanced Engineering Materials, 2016, 18, 1792-1798.	3.5	23
7 5	Al–RE Intermetallic Phase Stability and Effects on Corrosion Behavior in Coldâ€Chamber HPDC AE44 Alloy. Advanced Engineering Materials, 2016, 18, 148-155.	3.5	15
76	Progress in preparation of rare earth metals and alloys by electrodeposition in molten salts. Rare Metals, 2016, 35, 811-825.	7.1	38
77	Electrochemical reduction La(iii) on W and Mg electrodes: application to prepare Mg–La and Mg–Li–La alloys in LiCl–KCl melts. RSC Advances, 2016, 6, 29353-29364.	3.6	8
78	Electrochemical extracting variable valence ytterbium from LiCl–KCl–YbCl3 melt on Cu electrode. Electrochimica Acta, 2016, 193, 54-62.	5. 2	30
79	Study on Electrochemical Behavior of La(III) and Preparation of Alâ^'La Intermetallic Compound Whiskers in Chloride Melt. Journal of the Electrochemical Society, 2016, 163, D1-D8.	2.9	5
80	New horizon for high performance Mg-based biomaterial with uniform degradation behavior: Formation of stacking faults. Scientific Reports, 2015, 5, 13933.	3.3	47
81	Electrochemistry of Zn and co-reduction of Zn and Sm from LiCl–KCl melt. RSC Advances, 2015, 5, 23114-23121.	3.6	4
82	Self-growth of micro- and nano-structured Mg(OH) < sub>2 < /sub> on electrochemically anodised Mg–Li alloy surface. Journal of Experimental Nanoscience, 2015, 10, 56-65.	2.4	6
83	Hierarchical porous CNTs@NCS@MnO ₂ composites: rational design and high asymmetric supercapacitor performance. Journal of Materials Chemistry A, 2015, 3, 15642-15649.	10.3	39
84	Electrodeposition of Tb on Mo and Al electrodes: Thermodynamic properties of TbCl3 and TbAl2 in the LiCl-KCl eutectic melts. Electrochimica Acta, 2015, 167, 139-146.	5. 2	33
85	Separation of lanthanum from samarium on solid aluminum electrode in LiCl–KCl eutectic melts. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304, 1123-1132.	1.5	5
86	The Electrochemical Co-reduction of Mg-Al-Y Alloys in the LiCl-NaCl-MgCl2-AlF3-YCl3 Melts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 644-652.	2.1	9
87	The effect of NaF on the electrochemical behavior of the Mg–11Li–3.5Al–1Zn–1Sn–1Ce–0.1Mn election NaCl solution. RSC Advances, 2015, 5, 46423-46429.	trode 3.6	5
88	Electrochemical extraction and separation of praseodymium and erbium on reactive magnesium electrode in molten salts. Journal of Solid State Electrochemistry, 2015, 19, 3629-3638.	2.5	31
89	Study on formation and properties of Al–Li–Sm alloy containing whiskers in molten salts. RSC Advances, 2015, 5, 75863-75869.	3.6	6
90	Electrochemical behavior of La(<scp>iii</scp>) on liquid Bi electrode in LiCl–KCl melts. Determination of thermodynamic properties of La–Bi and Li–Bi intermetallic compounds. RSC Advances, 2015, 5, 82471-82480.	3.6	38

#	Article	IF	Citations
91	Development of Highâ€Performance Mg Alloy via Introducing Profuse Long Period Stacking Ordered Phase and Stacking Faults. Advanced Engineering Materials, 2015, 17, 876-884.	3.5	19
92	Ultrasonic-Assisted Electroless Ni-P Plating on Dual Phase Mg-Li Alloy. Journal of the Electrochemical Society, 2015, 162, C64-C70.	2.9	31
93	Synthesis of high surface area, mesoporous MgO nanosheets with excellent adsorption capability for Ni(II) via a distillation treating. Journal of Colloid and Interface Science, 2015, 438, 259-267.	9.4	57
94	Microstructure and texture evolution of Mg–Li alloy during rolling. International Journal of Materials Research, 2014, 105, 1111-1117.	0.3	7
95	Electrochemical extraction of cerium and formation of Al-Ce alloy from CeO2 assisted by AlCl3 in LiCl-KCl melts. Science China Chemistry, 2014, 57, 1477-1482.	8.2	24
96	Fabrication of Yb-Rich Mg–Li–Yb Alloys via Co-Reduction of Mg, Li and Yb. Journal of the Electrochemical Society, 2014, 161, D704-D711.	2.9	6
97	ZnCl ₂ and Liquid Zinc Assisted Electrochemical Extraction of Thulium from LiCl–KCl Melt. Journal of the Electrochemical Society, 2014, 161, D248-D255.	2.9	16
98	Extraction of ytterbium via co-reduction of Al(III) and Yb(III) from LiCl–KCl melt on W electrode. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299, 657-664.	1.5	5
99	The Electrochemical Formation of Ni-Tb Intermetallic Compounds on a Nickel Electrode in the LiCl-KCl Eutectic Melts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 929-935.	2.1	17
100	Selective extraction of gadolinium from Sm2O3 and Gd2O3 mixtures in a single step assisted by MgCl2 in LiCl–KCl melts. Journal of Solid State Electrochemistry, 2014, 18, 843-850.	2.5	6
101	Selective electrodeposition of dysprosium in LiCl-KCl-GdCl3-DyCl3 melts at magnesium electrodes: Application to separation of nuclear wastes. Electrochimica Acta, 2014, 118, 150-156.	5.2	36
102	Microstructures and corrosion resistance of three typical superlight Mg–Li alloys. International Journal of Materials Research, 2014, 105, 58-64.	0.3	4
103	Effect of an electrolyte additive hexamethylenetetramine on electrochemical behaviors of the Mg–11Li–3.5Al–2Zn–1.5Re–0.5Zr electrode. RSC Advances, 2014, 4, 27236-27241.	3.6	4
104	AlCl ₃ and liquid Al assisted extraction of Nd from NaCl–KCl melts via intermittent galvanostatic electrolysis. RSC Advances, 2014, 4, 40352-40358.	3.6	8
105	Hollow structured and flower-like C@MnCo ₂ O ₄ composite for high electrochemical performance in a supercapacitor. CrystEngComm, 2014, 16, 9873-9881.	2.6	98
106	Co-reduction behaviors of lanthanum and aluminium ions in LiCl-KCl eutectic. Electrochimica Acta, 2014, 147, 104-113.	5.2	30
107	Electrochemical extraction of samarium from LiCl-KCl melt by forming Sm-Zn alloys. Electrochimica Acta, 2014, 120, 369-378.	5.2	67
108	The effect of different concentrations of Na2SnO3 on the electrochemical behaviors of the Mg-8Li electrode. Ionics, 2014, 20, 1573-1578.	2.4	16

#	Article	IF	CITATIONS
109	Electrochemistry of CeCl3 in molten LiCl-KCl eutectic. Chemical Research in Chinese Universities, 2014, 30, 489-494.	2.6	9
110	Electrochemical reduction of Tm on Mg electrodes and co-reduction of Mg, Li and Tm on W electrodes. Electrochimica Acta, 2014, 135, 327-335.	5.2	15
111	Preparation of Fe ₃ O ₄ @C@Layered Double Hydroxide Composite for Magnetic Separation of Uranium. Industrial & Separatio	3.7	140
112	Electrodeposition of magnesium–lithium–dysprosium ternary alloys with controlled components from dysprosium oxide assisted by magnesium chloride in molten chlorides. Journal of Solid State Electrochemistry, 2013, 17, 2671-2678.	2.5	8
113	Uranium(vi) adsorption on alumina hollow microspheres synthesized via a facile self-templating process. RSC Advances, 2013, 3, 6621.	3.6	9
114	Electrochemical preparation of Mg-Li-Al-Er alloys by co-reduction in molten chloride. Acta Metallurgica Sinica (English Letters), 2013, 26, 455-460.	2.9	7
115	Electrochemical formation of Al-Li Alloys by codeposition of Al and Li from LiCl-KCl-AlF3 melts at 853 K. Chemical Research in Chinese Universities, 2013, 29, 324-328.	2.6	4
116	Electrochemical formation process and phase control of Mg-Li-Ce alloys in molten chlorides. Journal of Rare Earths, 2013, 31, 609-615.	4.8	9
117	Electrochemical Preparation of Al-Li-Er-Tm Alloys by Co-reduction. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2013, 44, 1605-1612.	2.1	3
118	Fabrication of Mg–Pr and Mg–Li–Pr alloys by electrochemical co-reduction from their molten chlorides. Electrochimica Acta, 2013, 107, 209-215.	5.2	32
119	Extraction of thorium from LiCl–KCl molten salts by forming Al–Th alloys: a new pyrochemical method for the reprocessing of thorium-based spent fuels. RSC Advances, 2013, 3, 23539.	3.6	29
120	Development and characterization of size controlled polymeric microcapsules loaded with superparamagnetic nanoparticles. Polymer Composites, 2013, 34, 443-449.	4.6	7
121	Controlled synthesis and luminescent properties of uniform SrMoO4 hollow microstructures and application as drug carrier. RSC Advances, 2013, 3, 5945.	3.6	8
122	Influence of the Hot Deformation Conditions on the Texture Evolution in Mg-8Li-5Zn-2Re Alloy. Rare Metal Materials and Engineering, 2013, 42, 673-678.	0.8	1
123	Synthesis of aluminananosheetsvia supercritical fluid technology with high uranyl adsorptive capacity. New Journal of Chemistry, 2013, 37, 366-372.	2.8	61
124	High U(vi) adsorption capacity by mesoporous Mg(OH)2 deriving from MgO hydrolysis. RSC Advances, 2013, 3, 23278.	3.6	66
125	Synthesis and Characterization of Novel Peanut-Like Co ₃ O ₄ Used as Catalyst. Integrated Ferroelectrics, 2012, 136, 81-86.	0.7	0
126	A new approach for the preparation of variable valence rare earth alloys from nano rare earth oxides at a low temperature in molten salt. RSC Advances, 2012, 2, 1585-1591.	3.6	9

#	Article	IF	CITATIONS
127	Preparation of Mg–Li—La alloys by electrolysis in molten salt. Transactions of Nonferrous Metals Society of China, 2012, 22, 16-22.	4.2	23
128	Electrochemical behavior of Pb(II) in LiCl-KCl-MgCl2-PbCl2 melts on Mo electrode. Transactions of Nonferrous Metals Society of China, 2012, 22, 711-716.	4.2	13
129	A new field-assisted annealing approach for advanced Cu-Zr Alloy metallization. Electronic Materials Letters, 2012, 8, 507-510.	2.2	2
130	Luminescence functionalization of MCM-48 by YVO4:Eu3+ for controlled drug delivery. RSC Advances, 2012, 2, 3281.	3.6	21
131	Conversion of Calcined Eggshells into Flowerâ€Like Hydroxyapatite Agglomerates by Solvothermal Method Using Hydrogen Peroxide/ <scp><scp>N</scp></scp> Nc/scp>	3.8	18
132	Cadmium hydroxide nanowires – new high capacity Ni–Cd battery anode materials without memory effect. Journal of Materials Chemistry, 2012, 22, 13922.	6.7	27
133	Rapid, morphologically controllable, large-scale synthesis of uniform Y(OH)3 and tunable luminescent properties of Y2O3:Yb3+/Ln3+ (Ln = Er, Tm and Ho). Journal of Materials Chemistry, 2012, 22, 16136.	6.7	63
134	Preparation, characterizations and magnetic properties of doped barium hexaferrites BaFe12-2x Mn x Sn x O19 (x = $0.0\hat{a} \in 1.0$). Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 507-511.	1.0	3
135	Microstructures and mechanical properties of various Mg-Li wrought alloys. Journal of Shanghai Jiaotong University (Science), 2012, 17, 297-300.	0.9	4
136	Trisodium citrate assisted synthesis of ZnO hollow spheres via a facile precipitation route and their application as gas sensor. Journal of Materials Chemistry, 2011, 21, 10750.	6.7	92
137	Electrochemical codeposition of Mg-Li-Gd alloys from LiCl-KCl-MgCl2-Gd2O3 melts. Transactions of Nonferrous Metals Society of China, 2011, 21, 825-829.	4.2	13
138	Electrochemical behaviour of erbium and preparation of Mg-Li-Er alloys by codeposition. Journal of Rare Earths, 2011, 29, 763-767.	4.8	25
139	Study of structural transformations and phases formation upon calcination of Zn–Ni–Al hydrotalcite nanosheets. Bulletin of Materials Science, 2011, 34, 183-189.	1.7	10
140	Electrochemical Formation of Mg–Li–Sm Alloys by Codeposition from LiCl–KCl–MgCl2–SmCl3 Molten Salts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2011, 42, 1376-1382.	2.1	16
141	Electrodeposition of Mg-Li-Al-La Alloys on Inert Cathode in Molten LiCl-KCl Eutectic Salt. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2011, 42, 1367-1375.	2.1	22
142	The effects of pinholes on proton exchange membrane fuel cell performance. International Journal of Energy Research, 2011, 35, 24-30.	4.5	36
143	Microwave Assisted Solvothermal Synthesis of Magnetic Fe ₃ O ₄ Micro Spheres and Spherical Aggregates at Low Temperature. Integrated Ferroelectrics, 2011, 127, 193-198.	0.7	1
144	Microstructure and Mechanical Properties of the As-Cast and Extruded Mg-(6-11)Li-3Al-Ce-Ca Alloys. Materials Transactions, 2010, 51, 1526-1530.	1.2	4

#	Article	IF	Citations
145	Fabrication of layered double hydroxide spheres through urea hydrolysis and mechanisms involved in the formation. Colloid and Polymer Science, 2010, 288, 1411-1418.	2.1	18
146	Electrochemical codeposition of typical $\hat{l}_{\pm}+\hat{l}^2$ phases Mg-Li alloys from the molten LiCl-KCl-MgCl2 system. Rare Metals, 2010, 29, 198-203.	7.1	1
147	Cerium chemical conversion coating on a novel Mg-Li alloy. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 112-117.	1.0	4
148	High-yield synthesis of silicon nanoparticles via the perpendicular pulsed laser ablation in the inert gas. Optoelectronics Letters, 2010, 6, 81-84.	0.8	3
149	Electrochemical Codeposition of Quaternary Mg-Li-Ce-La Alloys from Molten Salt. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2010, 41, 1123-1128.	2.1	13
150	Influences of 1Âwt% La-rich RE addition and deformation processes on the alloy of Mg–6Li–1.5Al. Journal of Materials Science, 2010, 45, 4084-4087.	3.7	2
151	Effect of chemical modification of graphite nanoplatelets on electrochemical performance of MnO2 electrodes. Journal of Materials Science: Materials in Electronics, 2010, 21, 619-624.	2.2	8
152	Fe ₃ O ₄ /TiO ₂ Core/Shell Nanotubes: Synthesis and Magnetic and Electromagnetic Wave Absorption Characteristics. Journal of Physical Chemistry C, 2010, 114, 16229-16235.	3.1	370
153	Locally resonant phononic woodpile: A wide band anomalous underwater acoustic absorbing material. Applied Physics Letters, 2009, 95, .	3.3	80
154	MECHANICAL PROPERTIES AND MICROSTRUCTURE OF Mg -5 Li -5 Al -3 Zn - xCd ALLOYS. International Journal of Modern Physics B, 2009, 23, 894-899.	2.0	3
155	ANALYSIS ON THE MICROSTRUCTURE OF THE AS-CAST AND EXTRUDED Mg-(6-10)Li-3Al-Ce-Ca ALLOYS. International Journal of Modern Physics B, 2009, 23, 920-926.	2.0	3
156	Self-assembled CuO nanoarchitectures and their catalytic activity in the thermal decomposition of ammonium perchlorate. Colloid and Polymer Science, 2009, 287, 853-858.	2.1	40
157	Pseudo-capacitance properties of porous metal oxide nanoplatelets derived from hydrotalcite-like compounds. Journal of Applied Electrochemistry, 2009, 39, 1803-1808.	2.9	7
158	Synthesis of chrysalis-like CuO nanocrystals and their cat alytic activity in the thermal decomposition of ammonium perchlorate. Journal of Chemical Sciences, 2009, 121, 1077-1081.	1.5	40
159	Micro-arc oxidation coatings on Mg-Li alloys. Rare Metals, 2009, 28, 160-163.	7.1	18
160	Effects of the addition of Y in Mg–8Li–(1,3)Al alloy. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2009, 516, 96-99.	5.6	83
161	Mesoscale organization of CuO nanoslices: Formation of sphere. Bulletin of Materials Science, 2008, 31, 193-195.	1.7	7
162	ZnO nanostructured microspheres and grown structures by thermal treatment. Bulletin of Materials Science, 2008, 31, 597-601.	1.7	18

#	ARTICLE	IF	CITATION
163	Synthesis and evolution of novel double tower-like ZnO by a simple method. Colloid and Polymer Science, 2008, 286, 849-853.	2.1	3
164	The crystallization of lysozyme in the system of ionic liquid [BMIm][BF ₄]â€water. Crystal Research and Technology, 2008, 43, 1062-1068.	1.3	28
165	Microwaveâ€Assisted Synthesis and Characterization of CuO Nanocrystals. Journal of Dispersion Science and Technology, 2008, 29, 508-513.	2.4	21
166	Bioinspired construction of Mgâ \in "Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance. Applied Physics Letters, 2008, 92, .	3.3	158
167	Electrochemical Codeposition of Mg–Li Alloys from a Molten KCl–LiCl–MgCl2 System. Chemistry Letters, 2008, 37, 212-213.	1.3	22
168	Selfâ€Assembled CuO Monocrystalline Nanoplatelets in Ionic Liquids. Journal of Dispersion Science and Technology, 2007, 28, 1223-1227.	2.4	7
169	Determination of Physical Properties for the Binary System of 1-Ethyl-3-methylimidazolium Tetrafluoroborate + H2O. Journal of Chemical & Engineering Data, 2004, 49, 760-764.	1.9	215
170	Synthesis and characterization of nanostructured Fe-Ni alloy whisker. Journal of Marine Science and Application, 2002, 1, 83-86.	1.7	0