Darren R Hargrave

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1542540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutations of the BRAF gene in human cancer. Nature, 2002, 417, 949-954.	13.7	9,374
2	Integrated Molecular Genetic Profiling of Pediatric High-Grade Gliomas Reveals Key Differences With the Adult Disease. Journal of Clinical Oncology, 2010, 28, 3061-3068.	0.8	558
3	Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncology, The, 2006, 7, 241-248.	5.1	547
4	Challenges to curing primary brain tumours. Nature Reviews Clinical Oncology, 2019, 16, 509-520.	12.5	540
5	Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nature Genetics, 2014, 46, 457-461.	9.4	423
6	Histone H3.3 Mutations Drive Pediatric Glioblastoma through Upregulation of MYCN. Cancer Discovery, 2013, 3, 512-519.	7.7	264
7	Clinical, Radiologic, Pathologic, and Molecular Characteristics of Long-Term Survivors of Diffuse Intrinsic Pontine Glioma (DIPG): A Collaborative Report From the International and European Society for Pediatric Oncology DIPG Registries. Journal of Clinical Oncology, 2018, 36, 1963-1972.	0.8	250
8	Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro-Oncology, 2012, 14, 790-797.	0.6	248
9	Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro-Oncology, 2017, 19, now101.	0.6	217
10	Phase II Study of Weekly Vinblastine in Recurrent or Refractory Pediatric Low-Grade Glioma. Journal of Clinical Oncology, 2012, 30, 1358-1363.	0.8	198
11	Mosaic RAS/MAPK variants cause sporadic vascular malformations which respond to targeted therapy. Journal of Clinical Investigation, 2018, 128, 1496-1508.	3.9	191
12	Melanoma in congenital melanocytic naevi. British Journal of Dermatology, 2017, 176, 1131-1143.	1.4	176
13	Paediatric and adult malignant glioma: close relatives or distant cousins?. Nature Reviews Clinical Oncology, 2012, 9, 400-413.	12.5	166
14	Combined MYC and P53 Defects Emerge at Medulloblastoma Relapse and Define Rapidly Progressive, Therapeutically Targetable Disease. Cancer Cell, 2015, 27, 72-84.	7.7	165
15	Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes. Cancer Discovery, 2020, 10, 942-963.	7.7	157
16	MGMT-Independent Temozolomide Resistance in Pediatric Glioblastoma Cells Associated with a PI3-Kinase–Mediated <i>HOX</i> /Stem Cell Gene Signature. Cancer Research, 2010, 70, 9243-9252.	0.4	152
17	Nocturnal oxygen saturation and painful sickle cell crises in children. Blood, 2003, 101, 846-848.	0.6	144
18	Natural history and outcome of optic pathway gliomas in children. Pediatric Blood and Cancer, 2009, 53, 1231-1237.	0.8	141

#	Article	IF	CITATIONS
19	Innovative Therapies for Children with Cancer pediatric phase I study of erlotinib in brainstem glioma and relapsing/refractory brain tumors. Neuro-Oncology, 2011, 13, 109-118.	0.6	137
20	A Distinct Spectrum of Copy Number Aberrations in Pediatric High-Grade Gliomas. Clinical Cancer Research, 2010, 16, 3368-3377.	3.2	135
21	Phase I study of oral sonidegib (LDE225) in pediatric brain and solid tumors and a phase II study in children and adults with relapsed medulloblastoma. Neuro-Oncology, 2017, 19, 1542-1552.	0.6	130
22	Quality of health information on the Internet in pediatric neuro-oncology. Neuro-Oncology, 2006, 8, 175-182.	0.6	128
23	Efficacy and Safety of Dabrafenib in Pediatric Patients with <i>BRAF</i> V600 Mutation–Positive Relapsed or Refractory Low-Grade Glioma: Results from a Phase I/IIa Study. Clinical Cancer Research, 2019, 25, 7303-7311.	3.2	128
24	Survival prediction model of children with diffuse intrinsic pontine glioma based on clinical and radiological criteria. Neuro-Oncology, 2015, 17, 160-166.	0.6	124
25	A multi-disciplinary consensus statement concerning surgical approaches to low-grade, high-grade astrocytomas and diffuse intrinsic pontine gliomas in childhood (CPN Paris 2011) using the Delphi method. Neuro-Oncology, 2013, 15, 462-468.	0.6	119
26	Pediatric low-grade gliomas: next biologically driven steps. Neuro-Oncology, 2018, 20, 160-173.	0.6	116
27	Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target. Acta Neuropathologica, 2018, 135, 757-777.	3.9	106
28	Molecular and Phenotypic Characterisation of Paediatric Glioma Cell Lines as Models for Preclinical Drug Development. PLoS ONE, 2009, 4, e5209.	1.1	102
29	Survival benefit for patients with diffuse intrinsic pontine glioma (DIPG) undergoing re-irradiation at first progression: A matched-cohort analysis on behalf of the SIOP-E-HGG/DIPG working group. European Journal of Cancer, 2017, 73, 38-47.	1.3	101
30	Conventional MRI cannot predict survival in childhood diffuse intrinsic pontine glioma. Journal of Neuro-Oncology, 2008, 86, 313-319.	1.4	97
31	Phase II, Open-Label, Randomized, Multicenter Trial (HERBY) of Bevacizumab in Pediatric Patients With Newly Diagnosed High-Grade Glioma. Journal of Clinical Oncology, 2018, 36, 951-958.	0.8	95
32	Hypofractionation vs Conventional Radiation Therapy for Newly Diagnosed Diffuse Intrinsic Pontine Glioma: A Matched-Cohort Analysis. International Journal of Radiation Oncology Biology Physics, 2013, 85, 315-320.	0.4	92
33	EGFRvIII Deletion Mutations in Pediatric High-Grade Glioma and Response to Targeted Therapy in Pediatric Glioma Cell Lines. Clinical Cancer Research, 2009, 15, 5753-5761.	3.2	84
34	Safety and pharmacokinetics of temozolomide using a dose-escalation, metronomic schedule in recurrent paediatric brain tumours. European Journal of Cancer, 2006, 42, 2335-2342.	1.3	83
35	New drugs for children and adolescents with cancer: the need for novel development pathways. Lancet Oncology, The, 2013, 14, e117-e124.	5.1	81
36	Pediatric pan-central nervous system tumor analysis of immune-cell infiltration identifies correlates of antitumor immunity. Nature Communications, 2020, 11, 4324.	5.8	75

#	Article	IF	CITATIONS
37	Diffuse intrinsic pontine glioma treated with prolonged temozolomide and radiotherapy – Results of a United Kingdom phase II trial (CNS 2007 04). European Journal of Cancer, 2013, 49, 3856-3862.	1.3	70
38	Progressive reduction in treatment-related deaths in Medical Research Council childhood lymphoblastic leukaemia trials from 1980 to 1997 (UKALL VIII, X and XI). British Journal of Haematology, 2001, 112, 293-299.	1.2	68
39	Challenges with defining response to antitumor agents in pediatric neuro-oncology: A report from the response assessment in pediatric neuro-oncology (RAPNO) working group. Pediatric Blood and Cancer, 2013, 60, 1397-1401.	0.8	64
40	A Phase I and Pharmacokinetic Study of Oral Dabrafenib in Children and Adolescent Patients with Recurrent or Refractory <i>BRAF</i> V600 Mutation–Positive Solid Tumors. Clinical Cancer Research, 2019, 25, 7294-7302.	3.2	63
41	Comprehensive molecular characterisation of epilepsy-associated glioneuronal tumours. Acta Neuropathologica, 2018, 135, 115-129.	3.9	57
42	Hereditary leiomyomatosis and renal cell carcinoma: very early diagnosis of renal cancer in a paediatric patient. Familial Cancer, 2010, 9, 239-243.	0.9	56
43	Heterogeneity of familial medulloblastoma and contribution of germline PTCH1 and SUFU mutations to sporadic medulloblastoma. Familial Cancer, 2011, 10, 337-342.	0.9	55
44	DNA methylation-based profiling for paediatric CNS tumour diagnosis and treatment: a population-based study. The Lancet Child and Adolescent Health, 2020, 4, 121-130.	2.7	55
45	Evaluation of dietetic intervention in children with medulloblastoma or supratentorial primitive neuroectodermal tumors. Cancer, 2003, 98, 1014-1020.	2.0	51
46	What are the experiences of the child with a brain tumour and their parents?. European Journal of Oncology Nursing, 2009, 13, 255-261.	0.9	50
47	A Five-Gene Hedgehog Signature Developed as a Patient Preselection Tool for Hedgehog Inhibitor Therapy in Medulloblastoma. Clinical Cancer Research, 2015, 21, 585-593.	3.2	50
48	MEK inhibition appears to improve symptom control in primary NRAS-driven CNS melanoma in children. British Journal of Cancer, 2017, 116, 990-993.	2.9	49
49	Paediatric high and low grade glioma: the impact of tumour biology on current and future therapy. British Journal of Neurosurgery, 2009, 23, 351-363.	0.4	48
50	Enhanced Efficacy of IGF1R Inhibition in Pediatric Glioblastoma by Combinatorial Targeting of PDGFRα/β. Molecular Cancer Therapeutics, 2011, 10, 1407-1418.	1.9	45
51	A tailored molecular profiling programme for children with cancer to identify clinically actionable genetic alterations. European Journal of Cancer, 2019, 121, 224-235.	1.3	44
52	A Phase I Trial of AT9283 (a Selective Inhibitor of Aurora Kinases) in Children and Adolescents with Solid Tumors: A Cancer Research UK Study. Clinical Cancer Research, 2015, 21, 267-273.	3.2	43
53	Germinoma with synchronous lesions in the pineal and suprasellar regions. Child's Nervous System, 2006, 22, 1513-1518.	0.6	42
54	Development of the SIOPE DIPG network, registry and imaging repository: a collaborative effort to optimize research into a rare and lethal disease. Journal of Neuro-Oncology, 2017, 132, 255-266.	1.4	42

#	Article	IF	CITATIONS
55	Phase II study of irinotecan in combination with temozolomide (TEMIRI) in children with recurrent or refractory medulloblastoma: a joint ITCC and SIOPE brain tumor study. Neuro-Oncology, 2013, 15, 1236-1243.	0.6	41
56	18F-Fluoroethylcholine (18F-Cho) PET/MRI Functional Parameters in Pediatric Astrocytic Brain Tumors. Clinical Nuclear Medicine, 2015, 40, e40-e45.	0.7	41
57	Microsatellite Instability in Pediatric High Grade Glioma Is Associated with Genomic Profile and Differential Target Gene Inactivation. PLoS ONE, 2011, 6, e20588.	1.1	41
58	Gender as a disease modifier in neurofibromatosis type 1 optic pathway glioma. Annals of Neurology, 2014, 75, 799-800.	2.8	38
59	Vincristine and carboplatin chemotherapy for unresectable and/or recurrent lowâ€grade astrocytoma of the brainstem. Pediatric Blood and Cancer, 2010, 55, 471-477.	0.8	36
60	†I have to live with the decisions I make': laying a foundation for decision making for children with life-limiting conditions and life-threatening illnesses. Archives of Disease in Childhood, 2017, 102, 468-471.	1.0	35
61	Trametinib in pediatric patients with neurofibromatosis type 1 (NF-1)–associated plexiform neurofibroma: A phase I/IIa study Journal of Clinical Oncology, 2018, 36, 10504-10504.	0.8	35
62	The addition of high-dose tamoxifen to standard radiotherapy does not improve the survival of patients with diffuse intrinsic pontine glioma. Journal of Neuro-Oncology, 2010, 100, 81-88.	1.4	34
63	Acampomelic campomelic syndrome. American Journal of Medical Genetics Part A, 2001, 104, 239-245.	2.4	32
64	Response Assessment in Pediatric Neuro-Oncology: Implementation and Expansion of the RANO Criteria in a Randomized Phase II Trial of Pediatric Patients with Newly Diagnosed High-Grade Gliomas. American Journal of Neuroradiology, 2016, 37, 1581-1587.	1.2	31
65	Arterial spin labelling and diffusion-weighted imaging in paediatric brain tumours. NeuroImage: Clinical, 2019, 22, 101696.	1.4	31
66	Neurosurgical experience of managing optic pathway gliomas. Child's Nervous System, 2021, 37, 1917-1929.	0.6	31
67	Pathological laughter and behavioural change in childhood pontine glioma. Journal of Neuro-Oncology, 2006, 77, 267-271.	1.4	30
68	MEK inhibitors for neurofibromatosis type 1 manifestations: Clinical evidence and consensus. Neuro-Oncology, 2022, 24, 1845-1856.	0.6	30
69	Declining childhood and adolescent cancer mortality: Great progress but still much to be done. Cancer, 2014, 120, 2388-2391.	2.0	27
70	The international diffuse intrinsic pontine glioma registry: an infrastructure to accelerate collaborative research for an orphan disease. Journal of Neuro-Oncology, 2017, 132, 323-331.	1.4	27
71	LGG-46. TRAMETINIB THERAPY IN PEDIATRIC PATIENTS WITH LOW-GRADE GLIOMAS (LGG) WITH BRAF GENE FUSION; A DISEASE-SPECIFIC COHORT IN THE FIRST PEDIATRIC TESTING OF TRAMETINIB. Neuro-Oncology, 2018, 20, i114-i114.	0.6	27
72	NF1 optic pathway glioma: analyzing risk factors for visual outcome and indications to treat. Neuro-Oncology, 2021, 23, 100-111.	0.6	27

#	Article	IF	CITATIONS
73	A case series of Diffuse Glioneuronal Tumours with Oligodendrogliomaâ€ŀike features and Nuclear Clusters (DGONC). Neuropathology and Applied Neurobiology, 2021, 47, 464-467.	1.8	27
74	Droplet digital PCR-based detection of circulating tumor DNA from pediatric high grade and diffuse midline glioma patients. Neuro-Oncology Advances, 2021, 3, vdab013.	0.4	27
75	Clinical presentation and prognostic indicators in 100 adults and children with neurofibromatosis 1 associated non-optic pathway brain gliomas. Journal of Neuro-Oncology, 2017, 133, 609-614.	1.4	26
76	Toxicity and Outcome of Children and Adolescents Participating in Phase I/II Trials of Novel Anticancer Drugs. Journal of Pediatric Hematology/Oncology, 2014, 36, 218-223.	0.3	25
77	Palliative and end-of-life care for children with diffuse intrinsic pontine glioma: results from a London cohort study and international survey. Neuro-Oncology, 2016, 18, 582-588.	0.6	25
78	Classification of paediatric brain tumours by diffusion weighted imaging and machine learning. Scientific Reports, 2021, 11, 2987.	1.6	25
79	Phase I study of tazemetostat, an enhancer of zeste homolog-2 inhibitor, in pediatric pts with relapsed/refractory integrase interactor 1-negative tumors Journal of Clinical Oncology, 2020, 38, 10525-10525.	0.8	24
80	Pediatric CNS tumors: current treatment and future directions. Expert Review of Neurotherapeutics, 2007, 7, 1029-1042.	1.4	22
81	Delineation of the visual pathway in paediatric optic pathway glioma patients using probabilistic tractography, and correlations with visual acuity. NeuroImage: Clinical, 2018, 17, 541-548.	1.4	22
82	A phase 1 study of oral ridaforolimus in pediatric patients with advanced solid tumors. Oncotarget, 2016, 7, 84736-84747.	0.8	22
83	The value of magnetic resonance spectroscopy in tumour imaging. Archives of Disease in Childhood, 2008, 93, 725-727.	1.0	21
84	Molecular correlates of cerebellar mutism syndrome in medulloblastoma. Neuro-Oncology, 2020, 22, 290-297.	0.6	21
85	A phase I/II study of LDE225, a smoothened (Smo) antagonist, in pediatric patients with recurrent medulloblastoma (MB) or other solid tumors Journal of Clinical Oncology, 2012, 30, 9519-9519.	0.8	21
86	A Study of Child Homicide over Two Decades. Medicine, Science and the Law, 1992, 32, 247-250.	0.6	20
87	A phase I/II trial of AT9283, a selective inhibitor of aurora kinase in children with relapsed or refractory acute leukemia: challenges to run early phase clinical trials for children with leukemia. Pediatric Blood and Cancer, 2017, 64, e26351.	0.8	20
88	Results of stage 1 of the oparatic trial: A phase I study of olaparib in combination with temozolomide in patients with relapsed glioblastoma Journal of Clinical Oncology, 2014, 32, 2025-2025.	0.8	20
89	Phase 1 trial of trametinib alone and in combination with dabrafenib in children and adolescents with relapsed solid tumors or neurofibromatosis type 1 (NF1) progressive plexiform neurofibromas (PN) Journal of Clinical Oncology, 2018, 36, 10537-10537.	0.8	20
90	Tobacco smoke exposure in children and adolescents with diabetes mellitus. Diabetic Medicine, 1999, 16, 31-34.	1.2	19

#	Article	IF	CITATIONS
91	Childhood brain tumour information on the Internet in the Chinese language. Child's Nervous System, 2006, 22, 346-351.	0.6	18
92	State of affairs in use of steroids in diffuse intrinsic pontine glioma: an international survey and a review of the literature. Journal of Neuro-Oncology, 2016, 128, 387-394.	1.4	18
93	Central nervous system tumours in adolescents. European Journal of Cancer, 2003, 39, 2643-2650.	1.3	17
94	Prognostic factors of overall survival in children and adolescents enrolled in dose-finding trials in Europe: An Innovative Therapies for Children with Cancer study. European Journal of Cancer, 2016, 67, 130-140.	1.3	17
95	Efficacy and safety results from a phase I/IIa study of dabrafenib in pediatric patients with <i>BRAF</i> V600–mutant relapsed refractory low-grade glioma Journal of Clinical Oncology, 2018, 36, 10506-10506.	0.8	17
96	Screen and identification of proteins interacting with ADAM19 cytoplasmic tail. Molecular Biology Reports, 2002, 29, 317-323.	1.0	15
97	Primary Pericardial Synovial Sarcoma Confirmed by Molecular Genetic Studies. Journal of Pediatric Hematology/Oncology, 2007, 29, 492-495.	0.3	15
98	DIPG Harbors Alterations Targetable by MEK Inhibitors, with Acquired Resistance Mechanisms Overcome by Combinatorial Inhibition. Cancer Discovery, 2022, 12, 712-729.	7.7	15
99	MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study. Neuro-Oncology Advances, 2021, 3, vdab042.	0.4	14
100	Joint EANM/SIOPE/RAPNO practice guidelines/SNMMI procedure standards for imaging of paediatric gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 3852-3869.	3.3	14
101	Case of interstitial 12q deletion in association with Wilms tumor. American Journal of Medical Genetics Part A, 2001, 104, 246-249.	2.4	13
102	Pattern of recurrence in paediatric malignant glioma: an institutional experience. Journal of Neuro-Oncology, 2007, 83, 279-284.	1.4	13
103	A Cell-Based MAPK Reporter Assay Reveals Synergistic MAPK Pathway Activity Suppression by MAPK Inhibitor Combination in <i>BRAF</i> -Driven Pediatric Low-Grade Glioma Cells. Molecular Cancer Therapeutics, 2020, 19, 1736-1750.	1.9	13
104	Dabrafenib in pediatric patients with BRAF V600–positive high-grade glioma (HGG) Journal of Clinical Oncology, 2018, 36, 10505-10505.	0.8	12
105	MRI and Molecular Characterization of Pediatric High-Grade Midline Thalamic Gliomas: The HERBY Phase II Trial. Radiology, 2022, 304, 174-182.	3.6	12
106	Evaluation of treatment response using integrated 18Fâ€labeled choline positron emission tomography/magnetic resonance imaging in adolescents with intracranial nonâ€germinomatous germ cell tumours. Pediatric Blood and Cancer, 2015, 62, 1661-1663.	0.8	11
107	Alcohol-abuse drug disulfiram targets pediatric glioma via MLL degradation. Cell Death and Disease, 2021, 12, 785.	2.7	11
108	A population pharmacokinetic model of AT9283 in adults and children to predict the maximum tolerated dose in children with leukaemia. British Journal of Clinical Pharmacology, 2017, 83, 1713-1722.	1.1	10

#	Article	IF	CITATIONS
109	Children's and Parents' Conceptualization of Quality of Life in Children With Brain Tumors: A Meta-Ethnographic Exploration. Qualitative Health Research, 2019, 29, 55-68.	1.0	10
110	Radiological Evaluation of Newly Diagnosed Non-Brainstem Pediatric High-Grade Glioma in the HERBY Phase II Trial. Clinical Cancer Research, 2020, 26, 1856-1865.	3.2	10
111	A phase II single-arm study of irinotecan in combination with temozolomide (TEMIRI) in children with newly diagnosed high grade glioma: a joint ITCC and SIOPE-brain tumour study. Journal of Neuro-Oncology, 2013, 113, 127-134.	1.4	9
112	Abstract A175: Phase 1 study of the EZH2 inhibitor, tazemetostat, in children with relapsed or refractory INI1-negative tumors including rhabdoid tumors, epithelioid sarcoma, chordoma, and synovial sarcoma. Molecular Cancer Therapeutics, 2018, 17, A175-A175.	1.9	9
113	Does chemotherapy have a role in the management of craniopharyngioma?. Journal of Pediatric Endocrinology and Metabolism, 2006, 19 Suppl 1, 407-12.	0.4	9
114	Phase I study of fotemustine in pediatric patients with refractory brain tumors. Cancer, 2002, 95, 1294-1301.	2.0	8
115	Preclinical drug development for childhood cancer. Expert Opinion on Drug Discovery, 2011, 6, 49-64.	2.5	8
116	Parents' responses to prognostic disclosure at diagnosis of a child with a highâ€risk brain tumor: Analysis of clinicianâ€parent interactions and implications for clinical practice. Pediatric Blood and Cancer, 2021, 68, e28802.	0.8	8
117	A 40-Year Cohort Study of Evolving Hypothalamic Dysfunction in Infants and Young Children (<3) Tj ETQq1 1 0.74	84314 rgB 1.7	BT (Overlock
118	Response to low dose temozolomide in radiation induced gliomatosis cerebri. Medical and Pediatric Oncology, 2003, 41, 562-564.	1.0	7
119	Diffuse brainstem gliomas in children: should we or shouldn't we biopsy?. British Journal of Neurosurgery, 2008, 22, 624-624.	0.4	7
120	Prospective multicentre evaluation and refinement of an analysis tool for magnetic resonance spectroscopy of childhood cerebellar tumours. Pediatric Radiology, 2018, 48, 1630-1641.	1.1	7
121	Systematic review: measurement properties of patient-reported outcome measures evaluated with childhood brain tumor survivors or other acquired brain injury. Neuro-Oncology Practice, 2020, 7, 277-287.	1.0	7
122	A Diagnostic Algorithm for Posterior Fossa Tumors in Children: A Validation Study. American Journal of Neuroradiology, 2021, 42, 961-968.	1.2	7
123	Pediatric diffuse intrinsic pontine glioma: can optimism replace pessimism?. CNS Oncology, 2012, 1, 137-148.	1.2	6
124	Identifying cellular signalling molecules in developmental disorders of the brain: Evidence from focal cortical dysplasia and tuberous sclerosis. Neuropathology and Applied Neurobiology, 2021, 47, 781-795.	1.8	6
125	Location, symptoms, and management of plexiform neurofibromas in 127 children with neurofibromatosis 1, attending the National Complex Neurofibromatosis 1 service, 2018–2019. American Journal of Medical Genetics, Part A, 2022, 188, 1723-1727.	0.7	6
126	PDTM-33. ATRX LOSS CONFERS ENHANCED SENSITIVITY TO COMBINED PARP INHIBITION AND RADIOTHERAPY IN PAEDIATRIC GLIOBLASTOMA MODELS. Neuro-Oncology, 2018, 20, vi210-vi211.	0.6	5

#	Article	IF	CITATIONS
127	Integrated analysis of longâ€ŧerm growth and bone development in pediatric and adolescent patients receiving bevacizumab. Pediatric Blood and Cancer, 2019, 66, e27487.	0.8	5
128	Complete radiographic responses in pediatric patients with BRAFV600-positive tumors including high-grade gliomas: Preliminary results of an ongoing phase 1/2a safety and pharmacokinetics (PK) study of dabrafenib Journal of Clinical Oncology, 2014, 32, 10056-10056.	0.8	5
129	Neurological Symptom Improvement After Re-Irradiation in Patients With Diffuse Intrinsic Pontine Glioma: A Retrospective Analysis of the SIOP-E-HGG/DIPG Project. Frontiers in Oncology, 0, 12, .	1.3	5
130	Magnetic Resonance Texture Analysis: Optimal Feature Selection in Classifying Child Brain Tumors. IFMBE Proceedings, 2014, , 309-312.	0.2	4
131	Commentary on "Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes― Acta Neuropathologica, 2016, 131, 793-794.	3.9	4
132	Evaluation of the Implementation of the Response Assessment in Neuro-Oncology Criteria in the HERBY Trial of Pediatric Patients with Newly Diagnosed High-Grade Gliomas. American Journal of Neuroradiology, 2019, 40, 568-575.	1.2	4
133	PDCT-01. BIOLOGICAL MEDICINE FOR DIFFUSE INTRINSIC PONTINE GLIOMAS ERADICATION (BIOMEDE): RESULTS OF THE THREE-ARM BIOMARKER-DRIVEN RANDOMIZED TRIAL IN THE FIRST 230 PATIENTS FROM EUROPE AND AUSTRALIA. Neuro-Oncology, 2019, 21, vi183-vi183.	0.6	4
134	Surveillance imaging of grade 1 astrocytomas in children: can duration and frequency of follow-up imaging and the use of contrast agents be reduced?. Neuroradiology, 2021, 63, 953-958.	1.1	4
135	A phase II clinical study of pomalidomide (CC-4047) monotherapy for children and young adults with recurrent or progressive primary brain tumors Journal of Clinical Oncology, 2019, 37, 10035-10035.	0.8	4
136	Tumours of the central nervous system. , 2004, , 287-322.		4
137	Spectrum of neuroimaging findings post-proton beam therapy in a large pediatric cohort. Child's Nervous System, 2021, 37, 435-446.	0.6	3
138	Preliminary results of molecular screening for <i>FGFR</i> alterations (alts) in the RAGNAR histology-agnostic study with the <i>FGFR</i> -inhibitor (FGFRi) erdafitinib Journal of Clinical Oncology, 2021, 39, 4081-4081.	0.8	3
139	Phase II study of weekly vinblastine in recurrent/refractory pediatric low grade gliomas. Journal of Clinical Oncology, 2008, 26, 10025-10025.	0.8	3
140	IMMU-08. Nivolumab with or without ipilimumab in pediatric patients with high-grade CNS malignancies: efficacy, safety, biomarker, and pharmacokinetic results from Checkmate 908. Neuro-Oncology, 2022, 24, i82-i83.	0.6	3
141	Pediatric high-grade gliomas and the WHO CNS Tumor Classification—Perspectives of pediatric neuro-oncologists and neuropathologists in light of recent updates. Neuro-Oncology Advances, 2022, 4, .	0.4	3
142	European paediatric hematology/oncology subspecialty training. Pediatric Blood and Cancer, 2004, 43, 612-613.	0.8	2
143	Diagnostic and Therapeutic Challenges Owing to Concurrent Pontine Glioma and Acute Lymphoblastic Leukemia. Journal of Pediatric Hematology/Oncology, 2008, 30, 454-457.	0.3	2
144	99 SIOP brain tumour trials. European Journal of Cancer, Supplement, 2009, 7, 26.	2.2	2

#	Article	IF	CITATIONS
145	Pre-existing neurodevelopmental and neuropsychiatric difficulties in children with brain tumours: implications for future outcome studies. Developmental Medicine and Child Neurology, 2011, 53, 93-93.	1.1	2
146	Challenges in incentivizing the pharmaceutical industry to supporting pediatric oncology clinical trials. Clinical Investigation, 2013, 3, 101-103.	0.0	2
147	Molecular profiling and preclinical targeted therapeutic testing in adamantinomatous craniopharyngioma. Lancet, The, 2017, 389, S22.	6.3	2
148	Outcome of children and adolescents with central nervous system tumors in phase I trials. Journal of Neuro-Oncology, 2018, 137, 83-92.	1.4	2
149	Regarding "Neuro-Oncology Practice Clinical Debate: targeted therapy vs conventional chemotherapy in pediatric low-grade glioma― Neuro-Oncology Practice, 2020, 7, 572-573.	1.0	2
150	Quantitative MRI demonstrates abnormalities of the third ventricle subventricular zone in neurofibromatosis type-1 and sporadic paediatric optic pathway glioma. NeuroImage: Clinical, 2020, 28, 102447.	1.4	2
151	Comprehensive analysis of the ErbB receptor family in pediatric nervous system tumors and rhabdomyosarcoma. Pediatric Blood and Cancer, 2022, 69, e29316.	0.8	2
152	Transitioning to molecular diagnostics in pediatric high-grade glioma: experiences with the 2016 WHO classification of CNS tumors. Neuro-Oncology Advances, 2021, 3, vdab113.	0.4	2
153	Automated Processing Pipeline for Texture Analysis of Childhood Brain Tumours based on Multimodal Magnetic Resonance Imaging. , 2013, , .		2
154	MODL-20. A BIOBANK OF ~100 PATIENT-DERIVED MODELS REPRESENTING BIOLOGICAL HETEROGENEITY AND DISTINCT THERAPEUTIC DEPENDENCIES IN PAEDIATRIC HIGH GRADE GLIOMA AND DIPG. Neuro-Oncology, 2020, 22, iii414-iii415.	0.6	2
155	Can we improve the efficiency of early phase trials in pediatric oncology?. Clinical Investigation, 2014, 4, 1021-1030.	0.0	1
156	Genetic heterogeneity forSMARCB1,H3F3AandBRAFin a malignant childhood brain tumour: genetic-pathological correlation. Neuropathology and Applied Neurobiology, 2015, 41, 832-836.	1.8	1
157	HG-128BO25041 - A PHASE II OPEN-LABEL, RANDOMIZED, MULTI CENTRE COMPARATIVE STUDY OF BEVACIZUMAB BASED THERAPY IN PAEDIATRIC PATIENTS WITH NEWLY DIAGNOSED SUPRATENTORIAL, INFRATENTORIAL CEREBELLAR, OR PEDUNCULAR HIGH GRADE GLIOMA. Neuro-Oncology, 2016, 18,	0.6	1
158	EPT-07PARTICIPATION OF CHILDREN AND ADOLESCENTS WITH CENTRAL NERVOUS SYSTEM TUMOURS IN PHASE I TRIALS WITHIN THE ITCC EUROPEAN CONSORTIUM. Neuro-Oncology, 2016, 18, iii25.2-iii25.	0.6	1
159	HG-75CLINICAL, RADIOLOGICAL, AND HISTO-GENETIC CHARACTERISTICS OF LONG-TERM SURVIVORS OF DIFFUSE INTRINSIC PONTINE GLIOMA: A COLLABORATIVE REPORT FROM THE INTERNATIONAL AND SIOP-E DIPG REGISTRIES. Neuro-Oncology, 2016, 18, iii65.3-iii66.	0.6	1
160	DDIS-19. OLAPARIB PENETRATES TUMOUR MARGINS AS WELL AS CONTRAST ENHANCING REGIONS OF GLIOBLASTOMA AT THERAPEUTIC LEVELS: INTERIM RESULTS OF THE OPARATIC TRIAL NCT01390571. Neuro-Oncology, 2016, 18, vi51-vi51.	0.6	1
161	Extent of resection in medulloblastoma: time to reconsider?. Lancet Oncology, The, 2016, 17, 409-410.	5.1	1
162	RBTT-06. TESSA JOWELL BRAIN MATRIX STUDY: A BRITISH FEASIBILITY STUDY OF MOLECULAR STRATIFICATION AND TARGETED THERAPY TO OPTIMIZE THE CLINICAL MANAGEMENT OF PATIENTS WITH GLIOMA. Neuro-Oncology, 2019, 21, vi219-vi220.	0.6	1

#	Article	IF	CITATIONS
163	LGG-09. SENOLYTIC AGENT NAVITOCLAX TARGETS VINBLASTINE- AND MAPK INHIBITORS-INDUCED SENESCENT TUMOUR CELLS IN PAEDIATRIC LOW GRADE GLIOMAS. Neuro-Oncology, 2021, 23, i33-i33.	0.6	1
164	A phase I study of ridaforolimus (MK-8669) in pediatric patients with advanced solid tumors Journal of Clinical Oncology, 2013, 31, 10027-10027.	0.8	1
165	HCC-32. Durable response to mTOR inhibitor after failing Checkpoint inhibitors in Ultra-Hypermutated High grade glioma in context of CMMRD. Neuro-Oncology, 2022, 24, i67-i68.	0.6	1
166	LGG-09. A Nationwide Service Evaluation of Safety, Radiologic and Visual Outcome Refining Bevacizumab-based Treatments in Children with Progressive Low-Grade Glioma. Neuro-Oncology, 2022, 24, i89-i89.	0.6	1
167	Combined Hardening of Composite Materials Based on Aluminum. Materials Science, 2002, 38, 903-906.	0.3	0
168	On-treatment Relapse of Medulloblastoma as Prolonged Pyrexia of Unknown Origin. Journal of Pediatric Hematology/Oncology, 2007, 29, 347-348.	0.3	0
169	The Herby Study: a Phase 2 Open-Label, Randomized, Multicenter Study of Bevacizumab-Based Therapy in Pediatric Patients with Newly Diagnosed High-Grade Glioma. Annals of Oncology, 2014, 25, iv145.	0.6	0
170	CR-24A 5-YEAR UPDATE REPORT OF A NATIONAL, VIRTUAL, INTERDISCIPLINARY ENDEAVOUR TO IMPROVE OUTCOMES FOR CHILDREN WITH HYPOTHALAMIC PITUITARY AXIS TUMOURS (HPATS) USING MULTI-SITE VIDEO CONFERENCING. Neuro-Oncology, 2016, 18, iii23.2-iii23.	0.6	0
171	HG-28SURVIVAL BENEFIT FOR PATIENTS WITH DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG) UNDERGOING RE-IRRADIATION AT FIRST PROGRESSION: ANALYSIS OF THE SIOP-E-DIPG/HGG WORKING GROUP. Neuro-Oncology, 2016, 18, iii53.3-iii53.	0.6	0
172	HG-44EVALUATION OF ABT-414 IN CHILDREN WITH HIGH GRADE GLIOMA (HGG) AND DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG). Neuro-Oncology, 2016, 18, iii57.2-iii57.	0.6	0
173	HG-85INTER-OBSERVER AGREEMENT IN NEUROPATHOLOGICAL HGG DIAGNOSIS : EXPERIENCE OF THE PRE-RANDOMISATION CENTRAL REVIEW IN THE HERBY TRIAL. Neuro-Oncology, 2016, 18, iii68.1-iii68.	0.6	0
174	PDCT-07. HERBY (BO25041): AÂPHASE II OPEN-LABEL, RANDOMIZED, MULTICENTER, COMPARATIVE STUDY OF BEVACIZUMAB (BEV)-BASED THERAPY IN PEDIATRIC PATIENTS WITH NEWLY DIAGNOSED HIGH-GRADE GLIOMA (HGG). Neuro-Oncology, 2016, 18, vi146-vi147.	0.6	0
175	C2.2â€Postzygotic activating variants in mapk pathway genes cause intracranial and extracranial vascular malformations that respond to targeted inhibition. , 2017, , .		0
176	HGG-15. PHASE 2 NESTED COHORT STUDY OF DEPATUXIZUMAB MAFODOTIN IN CHILDREN WITH HIGH GRADE GLIOMA AND DIFFUSE INTRINSIC PONTINE GLIOMA WITH EGFR AMPLIFICATION. Neuro-Oncology, 2018, 20, i91-i92.	0.6	0
177	QOL-19. THE PROMOTE STUDY: PATIENT REPORTED OUTCOME MEASURES ONLINE TO ENHANCE COMMUNICATION AND QUALITY OF LIFE AFTER CHILDHOOD BRAIN TUMOUR. Neuro-Oncology, 2018, 20, i161-i161.	0.6	0
178	RADI-05. EVALUATION OF THE IMPLEMENTATION OF THE RANO CRITERIA IN THE HERBY TRIAL OF PEDIATRIC PATIENTS WITH NEWLY DIAGNOSED HIGH-GRADE GLIOMAS. Neuro-Oncology, 2018, 20, i170-i170.	0.6	0
179	PDTM-34. TARGETING H3.3G34R/V RE-WIRING OF THE EPIGENOME IN PAEDIATRIC GLIOBLASTOMA OF CHILDREN AND YOUNG ADULTS. Neuro-Oncology, 2018, 20, vi211-vi211.	0.6	0
180	CRAN-17. TUMOUR COMPARTMENT TRANSCRIPTOMICS DEMONSTRATE THE ACTIVATION OF INFLAMMATORY AND ODONTOGENIC PROGRAMMES IN HUMAN ADAMANTINOMATOUS CRANIOPHARYNGIOMA AND IDENTIFY NOVEL THERAPEUTIC TARGETS. Neuro-Oncology, 2018, 20, i40-i40.	0.6	0

#	Article	IF	CITATIONS
181	EAPH-05. MOLECULAR PROFILING AND IDENTIFICATION OF TARGETED THERAPIES FOR CHILDREN AND YOUNG ADULTS WITH PRIMARY CENTRAL NERVOUS SYSTEM TUMOURS IN THE UNITED KINGDOM. Neuro-Oncology, 2018, 20, i66-i66.	0.6	0
182	RADI-04. COMBINED RADIOLOGICAL, PATHOLOGICAL AND MOLECULAR OUTCOME EVALUATION IN NEWLY DIAGNOSED NON-BRAINSTEM PEDIATRIC HIGH-GRADE GLIOMA FROM THE RANDOMIZED, MULTICENTER HERBY PHASE II TRIAL. Neuro-Oncology, 2018, 20, i170-i170.	0.6	0
183	Reply to â€~Assembling the brain trust: the multidisciplinary imperative in neuro-oncology'. Nature Reviews Clinical Oncology, 2019, 16, 522-523.	12.5	0
184	DIPG-25. GENETIC ALTERATIONS TARGETING THE MAPK PATHWAY CONFERS PRECLINICAL SENSITIVITY TO TRAMETINIB IN A CO-CLINICAL TRIAL IN DIPG. Neuro-Oncology, 2019, 21, ii74-ii74.	0.6	0
185	603TiP Phase II, open-label study of erdafitinib in adult and adolescent patients (pts) with advanced solid tumours harboring fibroblast growth factor receptor (FGFR) gene alterations. Annals of Oncology, 2020, 31, S502-S503.	0.6	0
186	A phase II open-label study in adult and adolescent patients (pts) with advanced solid tumors harboring fibroblast growth factor receptor (FGFR) gene alterations Journal of Clinical Oncology, 2021, 39, TPS480-TPS480.	0.8	0
187	HGG-07. RADIATION INDUCED SENESCENCE IN DIFFUSE INTRINSIC PONTINE GLIOMA CELLS REVEALS SELECTIVE VULNERABILITY TO BCL-XL INHIBITION. Neuro-Oncology, 2021, 23, i18-i18.	0.6	0
188	HGG-06. EARLY GABAERGIC NEURONAL LINEAGE DEFINES DEPENDENCIES IN HISTONE H3 G34R/V GLIOMA. Neuro-Oncology, 2021, 23, i18-i18.	0.6	0
189	The HERBY study: A phase II open label, randomized, multicenter, comparative study of bevacizumab (Bv)-based therapy in pediatric patients with newly diagnosed supratentorial high-grade glioma (HGG) Journal of Clinical Oncology, 2012, 30, TPS9596-TPS9596.	0.8	0
190	A phase I trial of AT9283 (a selective inhibitor of Aurora kinases) given for 72 hours every 21 days via intravenous infusion in children and adolescents with relapsed and refractory solid tumours Journal of Clinical Oncology, 2012, 30, 9542-9542.	0.8	0
191	Abstract LB-201: MYC and TP53 defects interact at medulloblastoma relapse to define rapidly progressive disease and can be targeted therapeutically. , 2014, , .		0
192	Long-term growth and development in 268 bevacizumab (BEV)-treated and 135 control pediatric/adolescent patients (pts): An integrated analysis Journal of Clinical Oncology, 2017, 35, 10554-10554.	0.8	0
193	MODL-19. DIPG HARBOUR ALTERATIONS TARGETABLE BY MEK INHIBITORS, WITH ACQUIRED RESISTANCE MECHANISMS OVERCOME BY COMBINATORIAL UP- OR DOWN-STREAM INHIBITION. Neuro-Oncology, 2020, 22, iii414-iii414.	0.6	0
194	LGG-17. SYNERGISTIC ACTIVITY OF MAPK INHIBITOR CLASSES REVEALED BY A NOVEL CELL-BASED MAPK ACTIVITY PEDIATRIC LOW-GRADE GLIOMA ASSAY. Neuro-Oncology, 2020, 22, iii369-iii369.	0.6	0
195	IMG-13. MRI-BASED RADIOMICS PROGNOSTIC MARKERS OF POSTERIOR FOSSA EPENDYMOMA. Neuro-Oncology, 2020, 22, iii357-iii357.	0.6	0
196	IMC-10. MRI-BASED RADIOMIC PROGNOSTIC MARKERS OF DIFFUSE MIDLINE GLIOMA. Neuro-Oncology, 2020, 22, iii357-iii357.	0.6	0
197	DDRE-07. DIPG HARBOUR ALTERATIONS TARGETABLE BY MEK INHIBITORS, WITH ACQUIRED RESISTANCE MECHANISMS OVERCOME BY COMBINATORIAL INHIBITION. Neuro-Oncology, 2020, 22, ii62-ii62.	0.6	0
198	44â€Parents' and clinicians' reconceptualisation of the future for children with high-risk brain tumours as revealed in consultations and home visits. , 2021, , .		0

#	Article	IF	CITATIONS
199	MEDB-48. Infant medulloblastoma - SHH subtype – with residual disease. To treat or not to treat. Neuro-Oncology, 2022, 24, i116-i117.	0.6	0
200	LGG-33. A 40-year cohort study of evolving hypothalamic dysfunction in 90 infants and young children (<3y) with optic pathway gliomas. Neuro-Oncology, 2022, 24, i95-i95.	0.6	0
201	HGG-59. Pediatric high-grade gliomas and the WHO classification on CNS Tumors - Different perspectives of pediatric neuro-oncologists and neuropathologists in the light of recent updates. Neuro-Oncology, 2022, 24, i75-i75.	0.6	0
202	DIPG-24. Neurological symptom improvement after re-irradiation in patients with diffuse intrinsic pontine glioma (DIPG): A retrospective analysis of the SIOP-E-HGG/DIPG project Neuro-Oncology, 2022, 24, i23-i23.	0.6	0
203	LGG-46. Survival Of The Fittest? A Prognostic Evaluation of Paediatric Low-Grade Glioma (PLGG) Survivor Functional Outcomes. Neuro-Oncology, 2022, 24, i98-i99.	0.6	0
204	ATRT-20. Novel prognostic molecular signatures for improved risk-classification of Atypical Teratoid Rhabdoid Tumours. Neuro-Oncology, 2022, 24, i7-i7.	0.6	0
205	HGG-49. Gliomatosis cerebri in children: A collaborative report from the European Society for Pediatric Oncology (SIOPE). Neuro-Oncology, 2022, 24, i72-i73.	0.6	0
206	HGG-58. SIOPE HGG Working Group approach to obtain consensus on management of paediatric high grade glioma across Europe. Neuro-Oncology, 2022, 24, i75-i75.	0.6	0
207	LGG-37. Long-term Outcome, Visual Morbidity and Prognostic Factors in Infants and Young Children with Optic Pathway Glioma from the Great Ormond Street Hospital (GOSH) LGG - Cohort. Neuro-Oncology, 2022, 24, i96-i96.	0.6	0