
SÃ;ndor Józsa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1542060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Terrestrial kaolin deposits trapped in Miocene karstic sinkholes on planation surface remnants, Transdanubian Range, Pannonian Basin (Hungary). Geological Magazine, 2021, 158, 349-358.	1.5	6

3	Permian felsic volcanic rocks in the Pannonian Basin (Hungary): new petrographic, geochemical, and geochronological results. International Journal of Earth Sciences, 2020, 109, 101-125.	1.8	17
4	Traces of Carnian volcanic activity in the Transdanubian Range, Hungary. International Journal of Earth Sciences, 2019, 108, 1451-1466.	1.8	16
5	Upper Triassic‒Middle Jurassic resedimented toe-of-slope and hemipelagic basin deposits in the Dinaridic Ophiolite Belt, Zlatar Mountain, SW Serbia. Facies, 2019, 65, 1.	1.4	7
6	FaÅ $ m 34$ ana amphorae: geological context and new petrographic and chemical results. , 2018, , .		0
7	Accretional and alterational differences in a carbonaceous chondrite parent body: Evidence from the <scp>NWA</scp> 5491 <scp>CV</scp> 3 meteorite. Meteoritics and Planetary Science, 2017, 52, 428-442.	1.6	0
8	Characterization and 10 Be content of iron carbonate concretions for genetic aspects – Weathering, desert varnish or burning: Rim effects in iron carbonate concretions. Journal of Environmental Radioactivity, 2017, 173, 58-69.	1.7	0
9	Fe-Mn oxide indications in the feeder and mound zone of the Jurassic Mn-carbonate ore deposit, Úrkút, Hungary. Ore Geology Reviews, 2017, 86, 839-855.	2.7	8
10	Provenance of the Upper Triassic siliciclastics of the Mecsek Mountains and VillÃ _i ny Hills (Pannonian) Tj ETQqO International Journal of Earth Sciences, 2017, 106, 2005-2024.	0 0 rgBT / 1.8	Overlock 10 15
11	Tracing multiple resedimentation on an isolated karstified plateau: The bauxite-bearing Miocene red clay of the Southern Bakony Mountains, Hungary. Sedimentary Geology, 2017, 358, 84-96.	2.1	12
12	The Budaörs-1 well revisited: Contributions to the Triassic stratigraphy, sedimentology, and magmatism of the southwestern part of the Buda Hills. Central European Geology, 2017, 60, 201-229.	0.4	3
13	Possible melting produced chondrule destruction in <scp>NWA</scp> 6604 <scp>CK</scp> 4 chondrite. Meteoritics and Planetary Science, 2015, 50, 1295-1309.	1.6	2
14	Paleoflow directions of a subaqueous lahar deposit around the Miocene Keserűs Hill lava dome complex (North Hungary) as constrained by photo-statistics and anisotropy of magnetic susceptibility (AMS). Journal of Volcanology and Geothermal Research, 2015, 302, 141-149.	2.1	3
15	Processing in a transitional environment of CV and CK chondrites× ³ parent bodies in the light of mineralogical and petrological analysis of NWA 1465 CV3 meteorite. Planetary and Space Science, 2015, 109-110, 175-186.	1.7	2
16	Alteration processes in the <scp>CV</scp> chondrite parent body based on analysis of <scp>NWA</scp> 2086 meteorite. Meteoritics and Planetary Science, 2014, 49, 1350-1364.	1.6	8
17	Different paleoenvironments of Late Pleistocene age identified in Verőce outcrop, Hungary: Preliminary results. Quaternary International, 2014, 319, 119-136.	1.5	9
18	Stratigraphy, facies and geodynamic settings of Jurassic formations in the Bükk Mountains, North Hungary: its relations with the other areas of the Neotethyan realm. Geological Magazine, 2013, 150, 18-49.	1.5	5

SÃindor JÃ³zsa

#	Article	IF	CITATIONS
19	Application of magnetic susceptibility on polished stone tools from Western Hungary and the Eastern part of the Czech Republic (Central Europe). Journal of Archaeological Science, 2009, 36, 2437-2444.	2.4	8
20	Lithofacies and age data of Jurassic foreslope and basin sediments of Rudabánya Hills (NE Hungary) and their tectonic interpretation. Geologica Carpathica, 2009, 60, 351-379.	0.7	10
21	Petrology and geochemistry of Upper Carboniferous siliciclastic rocks (Téseny Sandstone Formation) from the Slavonian-Drava Unit (Tisza Megaunit, S Hungary) - summarized results. Acta Geologica Hungarica, 2003, 46, 95-113.	0.2	9
22	Petrographical, geochemical and geochronological constraints on igneous clasts and sediments hosted in the Oligo-Miocene Bakony Molasse, Hungary: evidence for a Paleo-Drava River system. International Journal of Earth Sciences, 2001, 90, 519-533.	1.8	9
23	Interaction of basin-margin faults and tidal currents on nearshore sedimentary architecture and composition: a case study from the Early Miocene of northern Hungary. Tectonophysics, 1996, 266, 319-341.	2.2	7
24	Mesozoic Igneous Suites in Hungary: Implications for Genesis and Tectonic Setting in the Northwestern Part of Tethys. International Geology Review, 1996, 38, 336-360.	2.1	45