SÃ;ndor Józsa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1542060/publications.pdf Version: 2024-02-01

SÃ:NDOD LÃ37SA

#	Article	IF	CITATIONS
1	Mesozoic Igneous Suites in Hungary: Implications for Genesis and Tectonic Setting in the Northwestern Part of Tethys. International Geology Review, 1996, 38, 336-360.	2.1	45
2	Permian felsic volcanic rocks in the Pannonian Basin (Hungary): new petrographic, geochemical, and geochronological results. International Journal of Earth Sciences, 2020, 109, 101-125.	1.8	17
3	Traces of Carnian volcanic activity in the Transdanubian Range, Hungary. International Journal of Earth Sciences, 2019, 108, 1451-1466.	1.8	16
4	Provenance of the Upper Triassic siliciclastics of the Mecsek Mountains and VillÃ _i ny Hills (Pannonian) Tj ETQq0 0 International Journal of Earth Sciences, 2017, 106, 2005-2024.	0 rgBT /O 1.8	verlock 10 Tf 15
5	Tracing multiple resedimentation on an isolated karstified plateau: The bauxite-bearing Miocene red clay of the Southern Bakony Mountains, Hungary. Sedimentary Geology, 2017, 358, 84-96.	2.1	12
6	Lithofacies and age data of Jurassic foreslope and basin sediments of Rudabánya Hills (NE Hungary) and their tectonic interpretation. Geologica Carpathica, 2009, 60, 351-379.	0.7	10
7	Petrographical, geochemical and geochronological constraints on igneous clasts and sediments hosted in the Oligo-Miocene Bakony Molasse, Hungary: evidence for a Paleo-Drava River system. International Journal of Earth Sciences, 2001, 90, 519-533.	1.8	9
8	Different paleoenvironments of Late Pleistocene age identified in Verőce outcrop, Hungary: Preliminary results. Quaternary International, 2014, 319, 119-136.	1.5	9
9	Petrology and geochemistry of Upper Carboniferous siliciclastic rocks (Téseny Sandstone Formation) from the Slavonian-Drava Unit (Tisza Megaunit, S Hungary) - summarized results. Acta Geologica Hungarica, 2003, 46, 95-113.	0.2	9
10	Application of magnetic susceptibility on polished stone tools from Western Hungary and the Eastern part of the Czech Republic (Central Europe). Journal of Archaeological Science, 2009, 36, 2437-2444.	2.4	8
11	Alteration processes in the <scp>CV</scp> chondrite parent body based on analysis of <scp>NWA</scp> 2086 meteorite. Meteoritics and Planetary Science, 2014, 49, 1350-1364.	1.6	8
12	Fe-Mn oxide indications in the feeder and mound zone of the Jurassic Mn-carbonate ore deposit, Úrkút, Hungary. Ore Geology Reviews, 2017, 86, 839-855.	2.7	8
13	Interaction of basin-margin faults and tidal currents on nearshore sedimentary architecture and composition: a case study from the Early Miocene of northern Hungary. Tectonophysics, 1996, 266, 319-341.	2.2	7
14	Upper Triassic‒Middle Jurassic resedimented toe-of-slope and hemipelagic basin deposits in the Dinaridic Ophiolite Belt, Zlatar Mountain, SW Serbia. Facies, 2019, 65, 1.	1.4	7
15	Terrestrial kaolin deposits trapped in Miocene karstic sinkholes on planation surface remnants, Transdanubian Range, Pannonian Basin (Hungary). Geological Magazine, 2021, 158, 349-358.	1.5	6
16	Stratigraphy, facies and geodynamic settings of Jurassic formations in the Bükk Mountains, North Hungary: its relations with the other areas of the Neotethyan realm. Geological Magazine, 2013, 150, 18-49.	1.5	5
17	Paleoflow directions of a subaqueous lahar deposit around the Miocene Keserűs Hill lava dome complex (North Hungary) as constrained by photo-statistics and anisotropy of magnetic susceptibility (AMS). Journal of Volcanology and Geothermal Research, 2015, 302, 141-149.	2.1	3
18	The Budaörs-1 well revisited: Contributions to the Triassic stratigraphy, sedimentology, and magmatism of the southwestern part of the Buda Hills. Central European Geology, 2017, 60, 201-229.	0.4	3

SÃindor JÃ³zsa

#	Article	IF	CITATIONS
19	Possible melting produced chondrule destruction in <scp>NWA</scp> 6604 <scp>CK</scp> 4 chondrite. Meteoritics and Planetary Science, 2015, 50, 1295-1309.	1.6	2
20	Processing in a transitional environment of CV and CK chondrites× ³ parent bodies in the light of mineralogical and petrological analysis of NWA 1465 CV3 meteorite. Planetary and Space Science, 2015, 109-110, 175-186.	1.7	2
21	Paleogeographic implications of a multi-parameter Paleogene provenance dataset (Transylvanian) Tj ETQq1 1 0.7	'84314 rgl 1.6	3T/Overlock
22	Accretional and alterational differences in a carbonaceous chondrite parent body: Evidence from the <scp>NWA</scp> 5491 <scp>CV</scp> 3 meteorite. Meteoritics and Planetary Science, 2017, 52, 428-442.	1.6	0
23	Characterization and 10 Be content of iron carbonate concretions for genetic aspects – Weathering, desert varnish or burning: Rim effects in iron carbonate concretions. Journal of Environmental Radioactivity, 2017, 173, 58-69.	1.7	0
24	Fažana amphorae: geological context and new petrographic and chemical results. , 2018, , .		0