
Nicholas M Morton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1541992/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic loci mispositioning in Tmem120a knockout mice yields latent lipodystrophy. Nature Communications, 2022, 13, 321.	12.8	24
2	Coding and regulatory variants are associated with serum protein levels and disease. Nature Communications, 2022, 13, 481.	12.8	18
3	Genetic variants of the hypoxiaâ€inducible factor 3 alpha subunit (Hif3a) gene in the Fat and Lean mouse selection lines. Molecular Biology Reports, 2022, , 1.	2.3	2
4	Multiparametric High-Content Cell Painting Identifies Copper Ionophores as Selective Modulators of Esophageal Cancer Phenotypes. ACS Chemical Biology, 2022, 17, 1876-1889.	3.4	11
5	The phospholipase A2 family's role in metabolic diseases: Focus on skeletal muscle. Physiological Reports, 2021, 9, e14662.	1.7	17
6	Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis. Acta Neuropathologica, 2021, 141, 257-279.	7.7	76
7	JMJD6 promotes self-renewal and regenerative capacity of hematopoietic stem cells. Blood Advances, 2021, 5, 889-899.	5.2	9
8	Altered hypothalamic DNA methylation and stress-induced hyperactivity following early life stress. Epigenetics and Chromatin, 2021, 14, 31.	3.9	9
9	A human pluripotent stem cell model for the analysis of metabolic dysfunction in hepatic steatosis. IScience, 2021, 24, 101931.	4.1	19
10	Hydrogen sulfide in ageing, longevity and disease. Biochemical Journal, 2021, 478, 3485-3504.	3.7	24
11	The hepatic compensatory response to elevated systemic sulfide promotes diabetes. Cell Reports, 2021, 37, 109958.	6.4	9
12	Osteocalcin Regulates Arterial Calcification Via Altered Wnt Signaling and Glucose Metabolism. Journal of Bone and Mineral Research, 2020, 35, 357-367.	2.8	59
13	PHOSPHO1 is a skeletal regulator of insulin resistance and obesity. BMC Biology, 2020, 18, 149.	3.8	13
14	Substrate Utilization by Brown Adipose Tissue: What's Hot and What's Not?. Frontiers in Endocrinology, 2020, 11, 571659.	3.5	43
15	Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nature Communications, 2020, 11, 3097.	12.8	98
16	Strain-specificity in the hydrogen sulphide signalling network following dietary restriction in recombinant inbred mice. GeroScience, 2020, 42, 801-812.	4.6	10
17	Human umbilical cord perivascular cells improve human pancreatic islet transplant function by increasing vascularization. Science Translational Medicine, 2020, 12, .	12.4	34
18	Tst gene mediates protection against palmitate-induced inflammation in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications, 2020, 527, 1008-1013.	2.1	4

NICHOLAS M MORTON

#	Article	IF	CITATIONS
19	<i>Camk2n1</i> Is a Negative Regulator of Blood Pressure, Left Ventricular Mass, Insulin Sensitivity, and Promotes Adiposity. Hypertension, 2019, 74, 687-696.	2.7	13
20	The long non-coding RNA Cerox1 is a post transcriptional regulator of mitochondrial complex I catalytic activity. ELife, 2019, 8, .	6.0	42
21	Mouse Idh3a mutations cause retinal degeneration and reduced mitochondrial function. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	23
22	Sideroflexin 3 is a α-synuclein-dependent mitochondrial protein that regulates synaptic morphology. Journal of Cell Science, 2017, 130, 325-331.	2.0	19
23	Fumarate hydratase is a critical metabolic regulator of hematopoietic stem cell functions. Journal of Experimental Medicine, 2017, 214, 719-735.	8.5	62
24	Hypoxia determines survival outcomes of bacterial infection through HIF-1α–dependent reprogramming of leukocyte metabolism. Science Immunology, 2017, 2, .	11.9	61
25	Editorial: Are Rodent Models Fit for Investigation of Human Obesity and Related Diseases?. Frontiers in Nutrition, 2017, 4, 58.	3.7	15
26	Complement Factor B Is a Determinant of Both Metabolic and Cardiovascular Features of Metabolic Syndrome. Hypertension, 2017, 70, 624-633.	2.7	26
27	Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy. PLoS Genetics, 2017, 13, e1006744.	3.5	69
28	Construction of an integrative regulatory element and variation map of the murine Tst locus. BMC Genetics, 2016, 17, 77.	2.7	2
29	A Syntenic Cross Species Aneuploidy Genetic Screen Links RCAN1 Expression to β-Cell Mitochondrial Dysfunction in Type 2 Diabetes. PLoS Genetics, 2016, 12, e1006033.	3.5	39
30	Cysteine and hydrogen sulphide in the regulation of metabolism: insights from genetics and pharmacology. Journal of Pathology, 2016, 238, 321-332.	4.5	76
31	Glucocorticoids Acutely Increase Brown Adipose Tissue Activity in Humans, Revealing Species-Specific Differences in UCP-1 Regulation. Cell Metabolism, 2016, 24, 130-141.	16.2	147
32	Genetic identification of thiosulfate sulfurtransferase as an adipocyte-expressed antidiabetic target in mice selected for leanness. Nature Medicine, 2016, 22, 771-779.	30.7	57
33	Adipocyte Pseudohypoxia Suppresses Lipolysis and Facilitates Benign Adipose Tissue Expansion. Diabetes, 2015, 64, 733-745.	0.6	49
34	Deficiency of the bone mineralization inhibitor NPP1 protects against obesity and diabetes. DMM Disease Models and Mechanisms, 2014, 7, 1341-50.	2.4	21
35	Increased Angiogenesis Protects against Adipose Hypoxia and Fibrosis in Metabolic Disease-resistant 11β-Hydroxysteroid Dehydrogenase Type 1 (HSD1)-deficient Mice. Journal of Biological Chemistry, 2012, 287, 4188-4197.	3.4	82
36	Optimal Elevation of β-Cell 11β-Hydroxysteroid Dehydrogenase Type 1 Is a Compensatory Mechanism That Prevents High-Fat Diet–Induced β-Cell Failure. Diabetes, 2012, 61, 642-652.	0.6	26

NICHOLAS M MORTON

#	Article	IF	CITATIONS
37	Regulation of Adipocyte 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1) by CCAAT/Enhancer-Binding Protein (C/EBP) β Isoforms, LIP and LAP. PLoS ONE, 2012, 7, e37953.	2.5	22
38	A Stratified Transcriptomics Analysis of Polygenic Fat and Lean Mouse Adipose Tissues Identifies Novel Candidate Obesity Genes. PLoS ONE, 2011, 6, e23944.	2.5	48
39	Novel Fat Depot–Specific Mechanisms Underlie Resistance to Visceral Obesity and Inflammation in 11β-Hydroxysteroid Dehydrogenase Type 1–Deficient Mice. Diabetes, 2011, 60, 1158-1167.	0.6	54
40	Dietary manipulation reveals an unexpected inverse relationship between fat mass and adipose 11β-hydroxysteroid dehydrogenase type 1. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E1076-E1084.	3.5	18
41	Effects of Proportions of Dietary Macronutrients on Glucocorticoid Metabolism in Diet-Induced Obesity in Rats. PLoS ONE, 2010, 5, e8779.	2.5	9
42	Glucocorticoids as Modulators of Adipose Inflammation. Oxidative Stress and Disease, 2009, , 127-148.	0.3	0
43	Divergent Physical Activity and Novel Alternative Responses to High Fat Feeding in Polygenic Fat and Lean Mice. Behavior Genetics, 2008, 38, 292-300.	2.1	23
44	11&Bgr-Hydroxysteroid Dehydrogenase Type 1 and Obesity. , 2008, 36, 146-164.		117
45	7-Oxysterols Modulate Glucocorticoid Activity in Adipocytes through Competition for 11β-Hydroxysteroid Dehydrogenase Type. Endocrinology, 2008, 149, 5909-5918.	2.8	47
46	Dietary Macronutrient Content Alters Cortisol Metabolism Independently of Body Weight Changes in Obese Men. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 4480-4484.	3.6	71
47	Peripheral mechanisms contributing to the glucocorticoid hypersensitivity in proopiomelanocortin null mice treated with corticosterone. Journal of Endocrinology, 2007, 194, 161-170.	2.6	20
48	Omental 11βâ€hydroxysteroid Dehydrogenase 1 Correlates with Fat Cell Size Independently of Obesity. Obesity, 2007, 15, 1155-1163.	3.0	95
49	11β-Hydroxysteroid Dehydrogenase Type 1 Induction in the Arcuate Nucleus by High-Fat Feeding: A Novel Constraint to Hyperphagia?. Endocrinology, 2006, 147, 4486-4495.	2.8	43
50	Reduced Adipose Glucocorticoid Reactivation and Increased Hepatic Glucocorticoid Clearance as an Early Adaptation to High-Fat Feeding in Wistar Rats. Endocrinology, 2005, 146, 913-919.	2.8	69
51	A Polygenic Model of the Metabolic Syndrome With Reduced Circulating and Intra-Adipose Glucocorticoid Action. Diabetes, 2005, 54, 3371-3378.	0.6	62
52	Adipocyte-Specific Glucocorticoid Inactivation Protects Against Diet-Induced Obesity. Diabetes, 2005, 54, 1023-1031.	0.6	235
53	Down-Regulation of Adipose 11β-Hydroxysteroid Dehydrogenase Type 1 by High-Fat Feeding in Mice: A Potential Adaptive Mechanism Counteracting Metabolic Disease. Endocrinology, 2004, 145, 2707-2712.	2.8	102
54	Metabolic syndrome without obesity: Hepatic overexpression of 11β-hydroxysteroid dehydrogenase type 1 in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7088-7093.	7.1	399

#	Article	IF	CITATIONS
55	Novel Adipose Tissue–Mediated Resistance to Diet-Induced Visceral Obesity in 11β-Hydroxysteroid Dehydrogenase Type 1–Deficient Mice. Diabetes, 2004, 53, 931-938.	0.6	476
56	Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. Journal of Clinical Investigation, 2003, 112, 83-90.	8.2	387
57	A Transgenic Model of Visceral Obesity and the Metabolic Syndrome. Science, 2001, 294, 2166-2170.	12.6	1,622
58	Improved Lipid and Lipoprotein Profile, Hepatic Insulin Sensitivity, and Glucose Tolerance in 11l²-Hydroxysteroid Dehydrogenase Type 1 Null Mice. Journal of Biological Chemistry, 2001, 276, 41293-41300.	3.4	395