J Lindsay Whitton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1541849/publications.pdf Version: 2024-02-01

LLINDSAY WHITTON

#	Article	IF	CITATIONS
1	A food-responsive switch modulates TFEB and autophagy, and determines susceptibility to coxsackievirus infection and pancreatitis. Autophagy, 2021, 17, 402-419.	9.1	7
2	Hepatocytes trap and silence coxsackieviruses, protecting against systemic disease in mice. Communications Biology, 2020, 3, 580.	4.4	2
3	Biphasic and cardiomyocyte-specific IFIT activity protects cardiomyocytes from enteroviral infection. PLoS Pathogens, 2019, 15, e1007674.	4.7	13
4	Immunological and pathological consequences of coxsackievirus RNA persistence in the heart. Virology, 2017, 512, 104-112.	2.4	8
5	Type I IFN Signaling Is Dispensable during Secondary Viral Infection. PLoS Pathogens, 2016, 12, e1005861.	4.7	3
6	TCR independent suppression of CD8 + T cell cytokine production mediated by IFNÎ ³ in vivo. Virology, 2016, 498, 69-81.	2.4	2
7	Chromosomal mapping of the αMHC-MerCreMer transgene in mice reveals a large genomic deletion. Transgenic Research, 2016, 25, 639-648.	2.4	5
8	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
9	Coxsackievirus can exploit LC3 in both autophagy-dependent and -independent manners in vivo. Autophagy, 2015, 11, 1389-1407.	9.1	45
10	Adaptive Immune Responses. , 2014, , 303-319.		3
11	Coxsackievirus B Exits the Host Cell in Shed Microvesicles Displaying Autophagosomal Markers. PLoS Pathogens, 2014, 10, e1004045.	4.7	258
12	Antigen-Specific Naive CD8+ T Cells Produce a Single Pulse of IFN-γ In Vivo within Hours of Infection, but without Antiviral Effect. Journal of Immunology, 2014, 193, 1873-1885.	0.8	28
13	<i>In Vivo</i> Ablation of Type I Interferon Receptor from Cardiomyocytes Delays Coxsackieviral Clearance and Accelerates Myocardial Disease. Journal of Virology, 2014, 88, 5087-5099.	3.4	35
14	CD8+Memory T Cells Appear Exhausted within Hours of Acute Virus Infection. Journal of Immunology, 2013, 191, 4211-4222.	0.8	16
15	Coxsackievirus B3 Infects the Bone Marrow and Diminishes the Restorative Capacity of Erythroid and Lymphoid Progenitors. Journal of Virology, 2013, 87, 2823-2834.	3.4	15
16	Interactions between enteroviruses and autophagy in vivo. Autophagy, 2012, 8, 973-975.	9.1	19
17	Neural Stem Cell Depletion and CNS Developmental Defects After Enteroviral Infection. American Journal of Pathology, 2012, 180, 1107-1120.	3.8	35
18	Pancreatic Acinar Cell-Specific Autophagy Disruption Reduces Coxsackievirus Replication and Pathogenesis InÂVivo. Cell Host and Microbe, 2012, 11, 298-305.	11.0	72

J LINDSAY WHITTON

#	Article	IF	CITATIONS
19	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
20	Wild-type coxsackievirus infection dramatically alters the abundance, heterogeneity, and immunostimulatory capacity of conventional dendritic cells in vivo. Virology, 2012, 429, 74-90.	2.4	15
21	Autophagy, inflammation and neurodegenerative disease. European Journal of Neuroscience, 2011, 33, 197-204.	2.6	76
22	Coxsackievirus Infection Induces Autophagy-Like Vesicles and Megaphagosomes in Pancreatic Acinar Cells <i>In Vivo</i> . Journal of Virology, 2010, 84, 12110-12124.	3.4	138
23	A Novel Population of Myeloid Cells Responding to Coxsackievirus Infection Assists in the Dissemination of Virus within the Neonatal CNS. Journal of Neuroscience, 2010, 30, 8676-8691.	3.6	72
24	Short-term fasting induces profound neuronal autophagy. Autophagy, 2010, 6, 702-710.	9.1	243
25	Coxsackievirus B3 Inhibits Antigen Presentation In Vivo, Exerting a Profound and Selective Effect on the MHC Class I Pathway. PLoS Pathogens, 2009, 5, e1000618.	4.7	50
26	Viral Persistence and Chronic Immunopathology in the Adult Central Nervous System following Coxsackievirus Infection during the Neonatal Period. Journal of Virology, 2009, 83, 9356-9369.	3.4	76
27	Targeting myelin proteolipid protein to the MHC class I pathway by ubiquitination modulates the course of experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2008, 204, 92-100.	2.3	5
28	Increasing the CD4+T Cell Precursor Frequency Leads to Competition for IFN-γ Thereby Degrading Memory Cell Quantity and Quality. Journal of Immunology, 2008, 180, 6777-6785.	0.8	32
29	Enumeration and Functional Evaluation of Virus-Specific CD4 ⁺ and CD8 ⁺ T Cells in Lymphoid and Peripheral Sites of Coxsackievirus B3 Infection. Journal of Virology, 2008, 82, 4331-4342.	3.4	20
30	Tentative T Cells: Memory Cells Are Quick to Respond, but Slow to Divide. PLoS Pathogens, 2008, 4, e1000041.	4.7	69
31	Direct Interferon-Î ³ Signaling Dramatically Enhances CD4+ and CD8+ T Cell Memory. Journal of Immunology, 2007, 179, 1190-1197.	0.8	82
32	Detection of Intracellular Cytokines by Flow Cytometry. Current Protocols in Immunology, 2007, 78, Unit 6.24.	3.6	95
33	Deletions within the 5′UTR of coxsackievirus B3: Consequences for virus translation and replication. Virology, 2007, 360, 120-128.	2.4	35
34	Inhibition of Protein Trafficking by Coxsackievirus B3: Multiple Viral Proteins Target a Single Organelle. Journal of Virology, 2006, 80, 6637-6647.	3.4	65
35	Molecular Mimicry, Bystander Activation, or Viral Persistence: Infections and Autoimmune Disease. Clinical Microbiology Reviews, 2006, 19, 80-94.	13.6	542
36	Host and virus determinants of picornavirus pathogenesis and tropism. Nature Reviews Microbiology, 2005, 3, 765-776.	28.6	223

J LINDSAY WHITTON

#	Article	IF	CITATIONS
37	Analysis of Translational Initiation in Coxsackievirus B3 Suggests an Alternative Explanation for the High Frequency of R+4 in the Eukaryotic Consensus Motif. Journal of Virology, 2005, 79, 987-996.	3.4	16
38	Cutting Edge: Re-evaluating the In Vivo Cytokine Responses of CD8+ T Cells during Primary and Secondary Viral Infections. Journal of Immunology, 2005, 174, 5936-5940.	0.8	134
39	Coxsackievirus Targets Proliferating Neuronal Progenitor Cells in the Neonatal CNS. Journal of Neuroscience, 2005, 25, 2434-2444.	3.6	71
40	Interferon-Î ³ acts directly on CD8+ T cells to increase their abundance during virus infection. Journal of Experimental Medicine, 2005, 201, 1053-1059.	8.5	283
41	Myocarditis, Microbes and Autoimmunity. Autoimmunity, 2004, 37, 375-386.	2.6	44
42	Targeting plasmid-encoded proteins to the antigen presentation pathways. Immunological Reviews, 2004, 199, 40-53.	6.0	74
43	Generation and analysis of an RNA vaccine that protects against coxsackievirus B3 challenge. Virology, 2004, 330, 196-208.	2.4	29
44	Coxsackievirus replication and the cell cycle: a potential regulatory mechanism for viral persistence/latency. Medical Microbiology and Immunology, 2004, 193, 83-90.	4.8	33
45	The Regulation and Maturation of Antiviral Immune Responses. Advances in Virus Research, 2004, 63, 181-238.	2.1	19
46	The Rapidity with Which Virus-Specific CD8+T Cells Initiate IFN-Î ³ Synthesis Increases Markedly over the Course of Infection and Correlates with Immunodominance. Journal of Immunology, 2004, 173, 456-462.	0.8	53
47	Microorganisms and autoimmunity: making the barren field fertile?. Nature Reviews Microbiology, 2003, 1, 151-157.	28.6	216
48	Coxsackievirus B3 and the Neonatal CNS. American Journal of Pathology, 2003, 163, 1379-1393.	3.8	151
49	"Translocatory proteins―and "protein transduction domains― a critical analysis of their biological effects and the underlying mechanisms. Molecular Therapy, 2003, 8, 13-20.	8.2	68
50	Cell Cycle Status Affects Coxsackievirus Replication, Persistence, and Reactivation In Vitro. Journal of Virology, 2002, 76, 4430-4440.	3.4	165
51	Neonates Mount Robust and Protective Adult-Like CD8+-T-Cell Responses to DNA Vaccines. Journal of Virology, 2002, 76, 11911-11919.	3.4	44
52	Immunopathology during coxsackievirus infection. Seminars in Immunopathology, 2002, 24, 201-213.	4.0	49
53	Infectious origins for chronic diseases. Medical Laboratory Observer, 2002, 34, 10-5; quiz 16, 19.	0.1	0
54	DNA immunization and central nervous system viral infection. Advances in Virus Research, 2001, 56, 243-273.	2.1	1

J LINDSAY WHITTON

#	Article	IF	CITATIONS
55	Viruses can silently prime for and trigger central nervous system autoimmune disease. Journal of NeuroVirology, 2001, 7, 220-227.	2.1	53
56	Functional avidity maturation of CD8+ T cells without selection of higher affinity TCR. Nature Immunology, 2001, 2, 711-717.	14.5	339
57	CD4 + T Cells Induced by a DNA Vaccine: Immunological Consequences of Epitope-Specific Lysosomal Targeting. Journal of Virology, 2001, 75, 10421-10430.	3.4	60
58	Using Recombinant Coxsackievirus B3 To Evaluate the Induction and Protective Efficacy of CD8 ⁺ T Cells during Picornavirus Infection. Journal of Virology, 2001, 75, 2377-2387.	3.4	86
59	Enhancing T Cell Activation and Antiviral Protection by Introducing the HIV-1 Protein Transduction Domain into a DNA Vaccine. Human Gene Therapy, 2001, 12, 1881-1892.	2.7	19
60	Clinical implications of dysregulated cytokine production. Journal of Molecular Medicine, 2000, 78, 74-80.	3.9	253
61	Immune Responses following Neonatal DNA Vaccination Are Long-Lived, Abundant, and Qualitatively Similar to Those Induced by Conventional Immunization. Journal of Virology, 2000, 74, 2620-2627.	3.4	78
62	DNA vaccination to treat autoimmune diabetes. Annals of Medicine, 2000, 32, 285-292.	3.8	27
63	Exacerbation of Viral and Autoimmune Animal Models for Multiple Sclerosis by Bacterial DNA. Brain Pathology, 1999, 9, 481-493.	4.1	95
64	Rapid on/off cycling of cytokine production by virus-specific CD8+ T cells. Nature, 1999, 401, 76-79.	27.8	235
65	Viruses as triggers of autoimmunity: facts and fantasies. Current Opinion in Microbiology, 1999, 2, 392-397.	5.1	42
66	The Role of B Lymphocytes in Coxsackievirus B3 Infection. American Journal of Pathology, 1999, 155, 1205-1215.	3.8	121
67	Coxsackievirus B3-Induced Myocarditis. American Journal of Pathology, 1998, 153, 417-428.	3.8	143
68	Enhancement of Experimental Allergic Encephalomyelitis (EAE) by DNA Immunization with Myelin Proteolipid Protein (PLP) Plasmid DNA. Journal of Neuropathology and Experimental Neurology, 1998, 57, 758-767.	1.7	65
69	Protection of Mice against Lethal Coxsackievirus B3 Infection by Using DNA Immunization. Journal of Virology, 1998, 72, 8327-8331.	3.4	50
70	DNA Immunization with Minigenes: Low Frequency of Memory Cytotoxic T Lymphocytes and Inefficient Antiviral Protection Are Rectified by Ubiquitination. Journal of Virology, 1998, 72, 5174-5181.	3.4	131
71	Proteins Expressed by DNA Vaccines Induce Both Local and Systemic Immune Responses. Annals of the New York Academy of Sciences, 1996, 797, 196-206.	3.8	11
72	DNA immunization: Effects of vehicle and route of administration on the induction of protective antiviral immunity. FEMS Immunology and Medical Microbiology, 1996, 14, 221-230.	2.7	42